
351 Section 5 - Midterm Review

1. Number Representation – Integers (13 Autumn)

a) Explain why we have a Carry-Flag and an Overflow-Flag in x86 condition codes.
What is the difference between the two? (Explain in at most two sentences.)

b) Add 11011001 and 01100011 as two's complement 8-bit integers & convert the result to decimal
notation.

c) Convert your answer from the previous problem to a 2-digit hex value.

2. Floating-Point Number Representation (based on 12 Spring)

A new pizzeria has opened on the Ave. It is mysteriously called “Pizza 0x40490FDB”. Given that you are
in CSE351, you have a hunch what the mystery might be. Consider the string of hex digits as a 32-bit IEEE
floating point number (8-bit exponent and 23-bit fraction).

a) Fill in the hexadecimal digits in the bytes below and then translate them to individual bits.

8 hex digits in 4 bytes: 40 49 0F DB 

32 bits: __

b) Is this number positive or negative?

c) What is the exponent?
(exponents are biased in this representation so make sure to make this adjustment)

d) What is the significand in binary?
(only use the first 7 bits of the fraction, ignore the lower-order 16 bits)

e) What is the value of the number in binary?

f) What is the decimal number represented?
(only show two decimal digits after the decimal point)

g) What is the pizzeria’s mystery name?

3. Arrays – C to Assembly (based on 14 Autumn)

Given the following C function:

long sum_pair(long *z, long index) {

return z[index] + z[index + 1];
}

a) Write x86-64 assembly code for this function here. You can assume that z points to an array of 16
elements, and 0 <= index < 15.
Comments are not required but could help for partial credit.

4. Assembly and C (15 Winter)
Consider the following x86-64 assembly and C code:

<do_something>:

xor %rax,%rax
cmp $0x0,%rsi
 <end>
sub $0x1,%rsi

<loop>:
lea (%rdi,%rsi,),%rdx
add (%rdx),%ax
sub $0x1,%rsi
jns <loop>

<end>:
ret

short do_something(short* a, int len) {
short result = 0;
for (int i = ; i >= 0;) {

 ;
}
return result;

}

a) Both code segments are implementations of the unknown function do_something. Fill in the missing
blanks in both versions. (Hint: %rax and %rdi are used for result and a respectively. %rsi is used for
both len and i)

b) Briefly describe the value that do something returns and how it is computed. Use only variable names
from the C version in your answer.

5. Stack Discipline (14 Spring)

The following function recursively computes the greatest common divisor of the integers a, b:

int gcd(int a, int b) {
if (b == 0) {

return a;
} else {

return gcd(b, a % b);
}

}
Here is the x86_64 assembly for the same function:

4006c6 <gcd>:
4006c6: sub $0x18, %rsp
4006ca: mov %edi, 0x10(%rsp)
4006ce: mov %esi, 0x08(%rsp)
4006d2: cmpl $0x0, %esi
4006d7: jne 4006df <gcd+0x19>
4006d9: mov 0x10(%rsp), %eax
4006dd: jmp 4006f5 <gcd+0x2f>
4006df: mov 0x10(%rsp), %eax
4006e3: cltd
4006e4: idivl 0x08(%rsp)
4006e8: mov 0x08(%rsp), %eax
4006ec: mov %edx, %esi
4006ee: mov %eax, %edi
4006f0: callq 4006c6 <gcd>
4006f5: add $0x18, %rsp
4006f9: retq

Note: cltd is an instruction that sign extends %eax into %edx to form the 64-bit signed
value represented by the concatenation of [%edx | %eax].

Note: idivl <mem> is an instruction divides the 64-bit value [%edx | %eax] by the long stored at
<mem>, storing the quotient in %eax and the remainder in %edx.

a) Suppose we call gcd(144, 64) from another function (i.e. main()), and set a breakpoint just before the
statement “return a”. When the program hits that breakpoint, what will the stack look like, starting at
the top of the stack and going all the way down to the saved instruction address in main()? Label all
return addresses as "ret addr", label local variables, and leave all unused space blank.

<-%rsp points here at
start of procedure

b) How many total bytes of local stack space are created in each frame (in decimal)?

c) When the function begins, where are the arguments (a, b) stored?

d) From a memory-usage perspective, why are iterative algorithms generally preferred over recursive

algorithms?

Memory address on stack line) Value (8 bytes per line)
0x7ffffffffffffad0

Return address back to main

0x7ffffffffffffac8

0x7ffffffffffffac0

0x7ffffffffffffab8

0x7ffffffffffffab0

0x7ffffffffffffaa8

0x7ffffffffffffaa0

0x7ffffffffffffa98

0x7ffffffffffffa90

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

