Number Representation & Operators

CSE 351

Section 2

Number Bases

- Any numerical value can be represented as a linear combination of powers of base n, where n is an integer greater than 1
- Example: decimal (n=10)
 - Decimal numbers are just linear combinations of 1, 10, 100, 1000, etc.
 - E.g.: $1234 = 1 \times 1000 + 2 \times 100 + 3 \times 10 + 4 \times 1$

Binary Numbers

- Each digit is either a 1 or a 0
- Each digit corresponds to a power of 2
- Why use binary?
 - Easy to physically represent two states in memory, registers, across wires, etc.
 - High/Low voltage levels
 - This can scale to much larger numbers by using more hardware to store more bits

Decimal to Binary Conversion

To convert the decimal number d to binary, do the following:

- 1. Compute (d % 2). This will give you the lowest-order bit.
- 2. Divide d by 2, round down to the nearest integer, and continue the process to get the higher order bits.

Example: Convert 25₁₀ to binary.

First bit:	25 % 2 = 1	(25 / 2) = 12
Second bit:	12 % 2 = 0	(12 / 2) = 6
Third bit:	6 % 2 = 0	(6 / 2) = 3
Fourth bit:	3 % 2 = 1	(3 / 2) = 1
Fifth bit:	1 % 2 = 1	(1 / 2) = 0

Since we hit 0, we're done! $25_{10} = 11001_2$.

Exercise

• Convert 1234₁₀ to hexadecimal

Binary to Hexadecimal Conversion *Example:* Convert 0xA5E2 to binary.

We can convert this number digit by digit:

Converting back to hex is the exact same process; break the bit vector into groups of 4 and convert to hex.

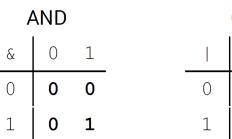
```
0
       0000
       0001
   2
       0010
   3
       0011
       0100
   5
       0101
       0110
       0111
   8
        1000
9
   9
       1001
       1010
   10
       1011
   12
       1100
   13
       1101
   14
       1110
   15
       1111
```

Exercise

Convert 4D2 to Binary

Bitwise Operators

- NOT: ~
 - This will flip all bits in the operand
- AND: &
 - This will perform a bitwise AND on every pair of bits
- OR:
 - This will perform a bitwise OR on every pair of bits
- XOR: ^
 - This will perform a bitwise XOR on every pair of bits
- SHIFT: <<, >>
 - This will shift the bits right or left
 - logical vs. arithmetic



OR				
	0	1		
0	0	1		
1	1	1		

OR		
0	1	
0	1	•
1	0	
	0	0 1 0 1

Logical Operators

- NOT: !
 - Evaluates the entire operand, rather than each bit
 - Produces a 1 if == 0, produces 0 if nonzero
- AND: &&
 - Produces 1 if both operands are nonzero
- OR: ||
 - Produces 1 if either operand is nonzero

Exercise

- 4 & 5
- 14 | 25
- 20 ^ 15

Masks

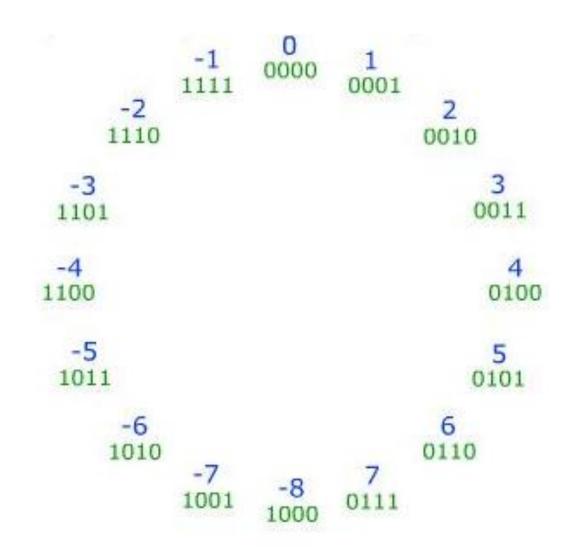
- These are usually strings of 1s that are used to isolate a subset of bits in an operand
 - Example: the mask 0xFF = ...00111111111 will "mask" the first byte of an integer
- Once you have created a mask, you can shift it left or right
 - Example: the mask 0xFF << 8 will "mask" the second byte of an integer
- You can apply a mask in different ways
 - To set bits in x, you can do $x = x \mid MASK$
 - To invert bits in x, you can do $x = x ^ MASK$
 - To erase everything but the masked bits in x, do x = x & MASK

Representing Signed Integers

- Two common ways:
 - Sign & Magnitude
 - Use 1 bit for the sign, remaining bits for magnitude
 - Works OK, but:
 - There are 2 ways to represent zero (-0 and 0)
 - Arithmetic is tricky $(4-3 \neq 4+(-3))$
 - Two's Complement
 - For positives, similar to regular binary representation
 - But, highest bit has a negative weight
 - Solves Sign-and-Magnitude's problems!

Two's Complement

- This is an example of the range of numbers that can be represented by a 4bit two's complement number
- An n-bit, two's complement number can represent the range $[-2^{n-1}, 2^{n-1} 1]$.
 - Note the asymmetry of this range about 0 there's one more negative number than positive
- Note what happens when you overflow
- If you still don't understand it, speak up!
 - Very confusing concept



Understanding Two's Complement

• There's a simpler way to find the value of a two's complement number, using the handy formula:

$$\sim x + 1 = -x$$
.

• We can rewrite this as $x = \sim (-x - 1)$, i.e. subtract 1 from the given number, and flip the bits to get the positive portion of the number.

Example: 0b11010110

- **Subtract 1**: 0b110101**10** 1 = 0b110101**01**
- Flip the bits: $0b00101010 = (32+8+2)_{10} = 42_{10}$
- So the original number we had was -42_{10} .