Types of cache questions:
1) TIO Breakdown
2) For fixed cache parameters, analyze the performance of the given
code/sequence
4) For given code/sequence, how does changing your cache parameters affect
performance?
5) Average Memory Access Time (AMAT)

What are the important cache parameters?
e Must figure these out from problem description
e Address size, cache size, block size, associativity, replacement policy
e Solve for TIO breakdown, # of sets, management bits
e What starts in the cache?

Code data structures affect addresses of memory accesses
e Array elements are stored contiguously in memory
O Ideal for spatial locality — if used properly
0 Different arrays not necessarily next to each other in memory
e Structs and linked list nodes are stored separately in memory
O Addresses of nodes/structs may be very different
0 Method of linking between nodes and ordering of nodes are
important
e Remember to account for data size (in bytes)!
o charisi, int/floatis 4, long/doubleis 8, structis?
e Pay attention to access pattern of code
O Arrays: does code touch all elements (e.g. increment all elements,
compute array sum) or just some elements (e.g. stride-by-N)?
O Linked Lists: generally starting from “head” node, how many struct
elements are touched?

Cache access patterns
e How many hits within a single cache block once it is loaded into the cache?

e Will that cache block still be in cache when you revisit its elements?

e Are there special/edge cases to consider?
0 Usually edge of block boundary or edge of cache size boundary



Example Cache Question: Assume our processor has two levels of data caches with the parameters
shown in the table below. Also assume:

e 1 GiB address space

e 100 clock cycles to access data in memory

a) Fillin the rest of the table below:

L1 L2
Cache Size 32 KiB 512 KiB
Block Size 8B 328B
Associativity 4-way Direct-mapped
Hit Time 1 cycle 33 cycles
Miss Rate 10% 2%
Werite Policy Write-through Write-through
Replacement Policy LRU n/a
Tag
Index
Offset
AMAT

For the rest of this problem, we decide to use ONLY the L1$ and run the following code. Assume:
e The cache starts cold
o Thearray char A[] is block-aligned and SIZE = 2725 (32 MiB array)
e Variables i, Jj, sum, and prod are stored in registers

char *A = (char *) malloc (SIZE * sizeof(char));

for (i=0; i<(SIZE/STRETCH); i++) { // # of STRETCHes

// go up to STRETCH
for (J=0; J<STRETCH; j++) sum += A[i*STRETCH + j];

// down from STRETCH
for (J=STRETCH-1; j>=0; j--) prod *= A[i*STRETCH + j];
}

a) As we double our STRETCH from 1 to 2 to 4 (... etc), we notice the number of cache misses doesn’t
change! What is the largest value of STRETCH before cache misses changes?

b) If we double the STRETCH from part (b), what is the ratio of cache hits to misses?



