## Types of cache questions:

- 1) TIO Breakdown
- 2) For fixed cache parameters, analyze the performance of the given code/sequence
- 3) For fixed cache parameters, find best/worst case scenarios
- 4) For given code/sequence, how does changing your cache parameters affect performance?
- 5) Average Memory Access Time (AMAT)

## What are the important cache parameters?

- Must figure these out from problem description
- Address size, cache size, block size, associativity, replacement policy
- Solve for TIO breakdown, # of sets, management bits
- What starts in the cache?

## Code data structures affect addresses of memory accesses

- Array elements are stored contiguously in memory
  - o Ideal for spatial locality if used properly
  - Different arrays not necessarily next to each other in memory
- Structs and linked list nodes are stored separately in memory
  - o Addresses of nodes/structs may be very different
  - Method of linking between nodes and ordering of nodes are important
- Remember to account for data size (in bytes)!
  - o char is 1, int/float is 4, long/double is 8, struct is?
- Pay attention to access pattern of code
  - Arrays: does code touch all elements (e.g. increment all elements, compute array sum) or just some elements (e.g. stride-by-N)?
  - <u>Linked Lists</u>: generally starting from "head" node, how many struct elements are touched?

## **Cache access patterns**

- How many hits within a single cache block once it is loaded into the cache?
- Will that cache block still be in cache when you revisit its elements?
- Are there special/edge cases to consider?
  - o Usually edge of block boundary or edge of cache size boundary

**Example Cache Question:** Assume our processor has two levels of data caches with the parameters shown in the table below. Also assume:

- 1 GiB address space
- 100 clock cycles to access data in memory
- a) Fill in the rest of the table below:

|                    | L1            | L2            |
|--------------------|---------------|---------------|
| Cache Size         | 32 KiB        | 512 KiB       |
| Block Size         | 8 B           | 32 B          |
| Associativity      | 4-way         | Direct-mapped |
| Hit Time           | 1 cycle       | 33 cycles     |
| Miss Rate          | 10%           | 2%            |
| Write Policy       | Write-through | Write-through |
| Replacement Policy | LRU           | n/a           |
| Tag                |               |               |
| Index              |               |               |
| Offset             |               |               |
| AMAT               |               |               |

For the rest of this problem, we decide to use ONLY the L1\$ and run the following code. Assume:

- The cache starts cold
- The array char A[] is block-aligned and SIZE = 2^25 (32 MiB array)
- Variables i, j, sum, and prod are stored in registers

- a) As we double our STRETCH from 1 to 2 to 4 (... etc), we notice the number of cache misses doesn't change! What is the largest value of STRETCH *before* cache misses changes?
- b) If we double the STRETCH from part (b), what is the ratio of cache hits to misses?