L28: Java and C Il

W UNIVERSITY of WASHINGTON

Javaand C I
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:

CSE351, Autumn 2016

Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat

Thomas Neuman

Waylon Huang
Xi Liu
Yufang Sun

SERIOUSLY? THIS
THING RONS JAKA?
ITS SINGLE-PURFISE
HARDWARE!

o\
d

T RET THEY ACTUALLY HIRED SONEONE
TO SPEND S1x MONTHS FORTING THIS
T S0 THEYCOULD WRITE THEIR 20
LUNES CF CODE IN A FAMILIAR SETTING.

[|

WELL, YOU KNOW WHAT THEY SAY—
WHEN ALL YOU HAVE IS A FAIR OF
BOLT CUTTERS AND A BOTTLE oF VODKA,
EVERYTHING LOOKS UKE THE LOCK ON
THE DOOR OF WOLF BLITZERS BOATHOUSE .

./
g

ITMGLAD
YoU HAD A
NICE NIGHT.

https://xkcd.com/801/

W UNIVERSITY of WASHINGTON L28: Javaand C Il

Administrivia

% Lab 5 due Friday @ 11:45pm
" Hard deadline on Sunday @ 11:45pm

+» Course evaluations now open
= See Piazza post @465 for links (separate for Lec A/B)

+ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
" Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
" Cumulative (midterm clobber policy applies)
" TWO double-sided handwritten 8.5X11” cheat sheets

- Recommended that you reuse or remake your midterm cheat sheet

WA UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

Starting a C Program

- Codeinfiles pl.c p2.c
» Compile with command: gcc -0Og pl.c p2.c -0 p

= Put resulting machine code in file p

» Run with command: ./p

text C program (pl.c p2.c)

l Compiler (gcc —0g -9)

text Asm program (pl.s p2.s)

l Assembler (gcc -cor as)

binary | Object program (pl.0 p2.0) Static libraries (. a)
l Linker (gcc or V
binary Executable program (p)

l Loader (the OS)

WA/ UNIVERSITY of WASHINGTON L28: Javaand C i CSE351, Autumn 2016

Compiler

» Input: Higher-level language code (e.g. C, Java)
= foo.c

/
>

+» Output: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

» First there’s a preprocessor step to handle #directives
= Macro substitution, plus other specialty directives
= |f curious/interested: http://tigcc.ticalc.org/doc/cpp.html

+ Super complex, take CSE401!
» Compiler optimizations
= “Level” of optimization specified by capital ‘O’ flag (e.g. -Og, -03)
= Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

WA/ UNIVERSITY of WASHINGTON L28: Javaand C i CSE351, Autumn 2016

Assembler

Input: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

Output: Object files (e.g. ELF, COFF)
= foo.o
= Contains object code and information tables

L)

0‘0

L)

*

» Reads and uses assembly directives

" e.g. .text, .data, .quad

= x86: https://docs.oracle.com/cd/E26502 01/html/E28388/eoiyg.html
+ Produces “machine language”

= Does its best, but object file is not a completed binary

W UNIVERSITY of WASHINGTON L28: Javaand C I CSE351, Autumn 2016

This is extra

Producing Machine Language (non-testable)

material

J/
0’0

Simple cases: arithmetic and logical operations, shifts, etc.

= All necessary information is contained in the instruction itself

+» What about the following?

= Conditional jump
= Accessing static data (e.g. global var or jump table)
= call

+» Addresses and labels are problematic because final executable
hasn’t been constructed yet!

= So how do we deal with these in the meantime?

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L28: Javaand C Il

This is extra

Object File Information Tables (non-testable)

material

» Symbol Table holds list of “items” that may be used by other

files
= Non-local labels — function names for cal |

= Static Data — variables & literals that might be accessed across files

Relocation Table holds list of “items” that this file needs the

address of later (currently undetermined)
= Any label or piece of static data referenced in an instruction in this file

« Both internal and external

» All files have their own symbol and relocation tables

WA/ UNIVERSITY of WASHINGTON L28: Javaand C i CSE351, Autumn 2016

. . This is extra
Object File Format (non-testable)

material

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code

3) data segment: data in the source file (binary)

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

- More info: ELF format
= http://www.skyfree.org/linux/references/ELF Format.pdf

WA/ UNIVERSITY of WASHINGTON L28: Javaand C i CSE351, Autumn 2016

Linker

+ Input: Object files (e.g. ELF, COFF)
= f00.0

+» Output: executable binary program
= a.out

+» Combines several object files into a single executable (/inking)
+» Enables separate compilation/assembling of files

= Changes to one file do not require recompiling of whole program

W UNIVERSITY of WASHINGTON L28: Javaand C I CSE351, Autumn 2016

This is extra

Linking (non-testable)

material

1) Take text segment from each .0 file and put them together

2) Take data segment from each .0 file, put them together, and
concatenate this onto end of text segments

3) Resolve References

" Go through Relocation Table; handle each entry

object file 1

a.out
Relocated data 1

Relocated data 2
Relocated text 1

Relocated text 2

data 1
text 1

object file 2
info 2

data 2
text 2

10

W UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

Loader

Input: executable binary program, command-line arguments
= _/a.out argl argZ2

Output: <program is run>

Loader duties primarily handled by OS/kernel
If run from terminal, shell calls fork and execv

execV will read executable’s header to initialize virtual
address space with correctly-sized text, data, and stack
segments

= |nitializes Instructions and Static Data from executable file

" |nitializes Stack with environment and argument strings

= Jumps to start-up routine to initialize registers
- Tobegin Int main(int argc, char *argv|[]), setsup%rdi, %rsi, %rip

11

WA/ UNIVERSITY of WASHINGTON

L28: Java and C Il

CSE351, Autumn 2016

Implementing Programming Languages

@,
0‘0

» We’ve talked about compilation, can also interpret

+ Interpreting languages has a long history

= Lisp, an early programming language, was interpreted

- Interpreters are still in common use:

= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Your source code

A4

Your source code

Binary executable
[Hardware

Many choices in how to implement programming models

Interpreter impl

N

nterpreter binary

I

Hardware

|1 .

WA UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

An Interpreter is a Program

» Execute the source code directly (or something close)
+ Simpler/no compiler — less translation
+» More transparent to debug — less translation

« Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Just port the interpreter

Slower and harder to optimize

K/
0‘0

Interpreter impl

Your source code \ /

S

nterpreter binary

13

W UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

Interpreter vs. Compiler

« An aspect of a language implementation
= Alanguage can have multiple implementations
= Some might be compilers and other interpreters

+» “Compiled languages” vs. “Interpreted languages” a misuse of
terminology
= But very common to hear this
" And has some validation in the real world (e.g. JavaScript vs. C)

+ Also, as about to see, modern language implementations are
often a mix of the two
" Compiling to a bytecode language, then interpreting
" Doing just-in-time compilation of parts to assembly for performance

14

W UNIVERSITY of WASHINGTON L28: Javaand C I CSE351, Autumn 2016

”The JVM” Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

+ Java programs are usually run by a Java virtual
machine (JVM)

= JVMs interpret an intermediate language called Java
bytecode

= Many JVMs compile bytecode to native machine code
- Just-in-time (JIT) compilation
- http://en.wikipedia.org/wiki/Just-in-time compilation

" Java is sometimes compiled ahead of time (AOT) like C

15

W UNIVERSITY of WASHINGTON L28: Javaand C Il

CSE351, Autumn 2016

Compiling and Running Java

+» The Java compiler converts Java into Java bytecodes
= Storedina .classfile

+» Save your Java code in a . Java file

+ To run the Java compiler:
= javac Foo.java

» To execute the program stored in the bytecodes, Java

bytecodes can be interpreted by a program (an interpreter)
= ForJava, the JVM is the interpreter

= java Foo runs the Java virtual machine
Loads the contents of FOO.class and interprets the bytecodes

16

W UNIVERSITY of WASHINGTON L28: Javaand C I CSE351, Autumn 2016

Virtual Machine Model

High-Level Language Program
(e.g. Java, C)

Bytecode compiler Ahead-of-time
(e.g. Javac Foo.java) compiler
compile time V|rtual Machine Language

run time (e.g. Java bytecodes)

_I
|
Virtual machine (mterpreter) |
(e.g. java Foo) compller |

L NS

Native Machine Language J

(e.g. x86, ARM, MIPS)

17

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L28: Javaand C I

Java Bytecode

7
0’0

\/
0’0

7
0‘0

Like assembly code for JVM,
but works on all INVMs

®= Hardware-independent!
Typed (unlike x86 assembly)
Strong JVM protections

Holds pointer this

Other arguments to method

Other local variables

|

0|1|2|3|4 n

variable table

operand stack

constant

pool

18

W UNIVERSITY of WASHINGTON L28: Javaand C Il

JVM Operand Stack

Bytecode: iload 1 // push 15t argument from table onto stack

1load 2 // push 2" argument from table onto stack

1add // pop top 2 elements from stack, add together, and
// push result back onto stack

istore 3 // pop result and put i1t into third slot in table

/ Compiled

Holds pointer this

CSE351, Autumn 2016

Other arguments to method
Other local variables

|

1

|

1

2

3

4

variable table
operand stack

\ A |
JVM: 0
ﬂi’ = integer,)
‘a’ = reference,
‘b’ for byte,
‘c’ for char,

\d for double, .

constant
pool

l

[

No registers or stack locations! J to x86:

All operations use operand stack

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax

mov %eax, -8(%ebp)

19

WA UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

A Simple Java Method

Method java.lang.String getEmployeeName()
O aload O // "this" object i1s stored at O In the var table

1 getfield #5 <Field java.lang.String name>
// getfield instruction has a 3-byte encoding
// Pop an element from top of stack, retrieve its
// speciftied instance field and push i1t onto stack
// "name" fTield 1s the fifth field of the object

4 areturn // Returns object at top of stack

Byte number: O 1 4
aload 0 |getfield 00 05 areturn

As stored in the .classfile: |2A|B4|00|05|B0O

http://en.wikipedia.org/wiki/Java bytecode instruction listings

20

WA UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

Class File Format

+ Every class in Java source code is compiled to its own class file

« 10 sections in the Java class file structure:

Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
Version of class file format: The minor and major versions of the class file
Constant pool: Set of constant values for the class

Access flags: For example whether the class is abstract, static, final, etc.

This class: The name of the current class

Super class: The name of the super class

Interfaces: Any interfaces in the class

Fields: Any fields in the class

Methods: Any methods in the class

Attributes: Any attributes of the class (for example, name of source file, etc.)

« A _jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)

21

WA UNIVERSITY of WASHINGTON L28: Javaand C | CSE351, Autumn 2016

Compiled from Employee. java
Disassembled class Employee extends java.lang.Object {
public Employee(jJava.lang.String, int);
public java.lang.String getEmployeeName();

Java Bytecode , Potic it setEmioyestinero;

Method Employee(java.lang.String, int)

aload O

invokespecial #3 <Method java.lang.Object()>

aload O

aload_1

putfield #5 <Field java.lang.String name>

aload O

10 1load_2

11 putfield #4 <Field int 1dNumber>

14 aload O

’ 15 aload_1

> javap -c Employee 16 iload_2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

o ouphELO

> javac Employee. java

20 return

Method java.lang.String getEmployeeName()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload O
o . o 1 getfield #4 <Field int idNumber>
http://en.wikipedia.org/wiki/Java 4 ?retum

bytecode instruction listings

Method void storeData(java.lang.String, Int)
2

WA UNIVERSITY of WASHINGTON L28: Javaand C Il CSE351, Autumn 2016

Other languages for JVMs

« JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect]), an aspect-oriented extension of Java
= ColdFusion, a scripting language compiled to Java
= Clojure, a functional Lisp dialect
= @roovy, a scripting language
= JavaFX Script, a scripting language for web apps
= JRuby, an implementation of Ruby
= Jython, an implementation of Python
= Rhino, an implementation of JavaScript
= Scala, an object-oriented and functional programming language
= And many others, even including C!

23

W UNIVERSITY of WASHINGTON L28: Javaand C I CSE351, Autumn 2016

Microsoft’s Ci# and .NET Framework

« C# has similar motivations as Java

= Virtual machine is called the

, C# VB.NET J#
Common Language Runtime code code code
= Common Intermediate Language l l l
is the bytecode for C# and other
Compiler Compiler Compiler

languages in the .NET framework

—

P ol Common Language Infrastructure -« -+ ---- ."

e

NET compatible languages compile to a
Common second platform-neutral language called

IrL:r.-rrm.-ﬂ ate Common Intermediate Language (CIL).
anguage
The platform-specific Common Language
mmon : : ;
Lca?1gi1 qc;e Runtime (CLR) compiles CIL to machine-
RLlr1li;11e readable code that can be executed on the
current platform.
01001100101011
11010101100110

24

WA/ UNIVERSITY of WASHINGTON L28: Javaand C i CSE351, Autumn 2016

We made it! ©
C:

Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
~s —
Assembly get_mpg:
) pushg %rbp
language: movq %rsp, %rbp
6ééq %rbp
ret | 0S:
\ 4
Machine 0111010000011000 -- /1
de: 100011010000010000000010
coge. 1000100111000010 =
110000011111101000011111 i '
_ Windows 8 Mac
v v
Computer

system:

25

