W UNIVERSITY of WASHINGTON

Javaand C|
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:

Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

L27: Javaand C |

HEY, TURN ON THE. NELJS,

CANT. DOWNLOADING
A CD ONTO MY PHONE.

=N

WHY?

/50T CAN USE T
£ BX MY COMPUTERS

OPERATING SYSTEM

\
ENOUGH THAT (AN
TEAM ITTO TALKTO
My TV SCREEN.

J

4

BUT THEN YouLL
BE ABLE TO
WATCH THE NEWS?

/

NO.
N

https://xkcd.com/1760/

CSE351, Autumn 2016

DONT YOU HAVE A
COMPUTER SUENCE
DEGREE?

S THAT JUST MEANS
T UNDERSTAND
HOL) EVERYTHING

WENT SO LJRONG.

W UNIVERSITY of WASHINGTON L27: Javaand C |

Administrivia

% Lab 5 due Friday @ 11:45pm
" Hard deadline on Sunday @ 11:45pm

+» Course evaluations now open
= See Piazza post @465 for links (separate for Lec A/B)

+ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
" Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
" Cumulative (midterm clobber policy applies)
" TWO double-sided handwritten 8.5X11” cheat sheets

- Recommended that you reuse or remake your midterm cheat sheet

W UNIVERSITY of WASHINGTON

L27: Javaand C |

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
Assembly get_mpg:
i pushg %rbp
language: movq %rsp, %rbp
popa %rbp
ret | 0S:
\ 4
Machine 0111010000011000
de: 100011010000010000000010
COdE. 1000100111000010
110000011111101000011111
Computer

system:

CSE351, Autumn 2016

Java vs. C

W UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Java vs. C

+» Reconnecting to Java (hello CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’ve learned about the following items in C; now
we’ll see what they look like for Java:
" Representation of data
= Pointers / references
= Casting
® Function / method calls including dynamic dispatch
" Runtime environment
" Translation from high-level code to machine code

WA UNIVERSITY of WASHINGTON

L27: Javaand C |

CSE351, Autumn 2016

Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

" |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

W UNIVERSITY of WASHINGTON L27: Javaand C |

CSE351, Autumn 2016

Meta-point to this lecture

+» None of the data representations we are going to talk
about are guaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

= Butitis important to understand an implementation of the
lower levels — useful in thinking about your program

WA UNIVERSITY of WASHINGTON L27: Javaand C |

CSE351, Autumn 2016

Data in Java

+ Integers, floats, doubles, pointers — same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: Intis 4 bytes in Java regardless of machine

"= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)

» null is typically represented as O but “you can’t tell”

%~ Much more interesting:
" Arrays

" Characters and strings
" Objects

WA/ UNIVERSITY of WASHINGTON L27: JavaandC| CSE351, Autumn 2016

Data in Java: Arrays

. Every element initialized to O or nul |l

» Length specified in immutable field at start of array (1Nt —4
bytes)
= array. length returns value of this field

» Since it has this info, what can it do?

C: int array[5];

ald Wald Wald Wald Wale
0O 4 20
Java: int[] array = new int[5];

5 |00|00(00(00]00
O 4 20 24

WA UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Data in Java: Arrays

Every element initialized to O or nul |

Length specified in immutable field at start of array (1Nt -4
bytes)
= array. length returns value of this field

Every access triggers a bounds-check

" Code is added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
PERIESIEI S * Length field is likely in cache
—1 1 1 [« Compiler may store length field
0 4 20 in register for loops
Java: int[] array = new int[5]; « Compiler may prove that some
5 [oolooloolooloo checks are redundant

O 4 20 24

WA UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Data in Java: Characters & Strings

» Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets

» String not bounded by a ‘\O’ (null character)
= Bounded by hidden length field at beginning of string

» All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

C/T;SC” 43|53|a5(33[35[31[\0

(ASCl) 5 A 7

Java: 6 00[43]o0|53|00(45]|00(33|00[35]00](31
(Unicode)

o) 4 38 16

10

WA/ UNIVERSITY of WASHINGTON

L27: Javaand C |

Data in Java: Objects

CSE351, Autumn 2016

+ Data structures (objects) are always stored by reference, never

stored “inline”

" |nclude complex data types (arrays, other objects, etc.) using references

C: Java:
struct rec { class Rec {
int 1; int 1;
int a[3]; iInt[] a = new Int[3];
struct rec *p; Rec p;
33 ...
= a|] stored “inline” as part of ¥
struct = a stored by reference in object
/ i 1|a ? [)‘
i |a D ¢ 0 4 [12 20
0O 4 16 24 3

16 1

O 4

W UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Pointer/reference fields and variables

» In C, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct
= (*r).a issocommon it becomes r->a

+ InJava, all non-primitive variables are references to objects
= We always use r.a notation

= But really follow reference to r with offset to a, just like r->ain C

"= So no Java field needs more than 8 bytes

C: Java:

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec();
r->1 = val; r.i1 = val;
r->a[2] = val; r.a[2] = val;
r->p = &r2; r.p = r2;

12

WA UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Pointers/References

Pointers in C can point to any memory address
References in Java can only point to [the starts of] objects

= Canonly be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int 1; int 1;
int aJ3]; int][] a = new Int[3];
struct rec *p; Rec p;
}s by
struct rec* r = malloc(.); Rec r = new Rec();
some_fn(&(r->al[l])); 7/ ptr some_fn(r.a, 1); // ref, index

r

r \ >
. /’—_)b ‘SSIi ad ? [)‘ k?*Z/
a! | | p 0

| 0 4 [12 \2
0 4 16 24 3 [int[3]

O 4 16 13

L27: Javaand C |

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

» Can cast any pointer into any other pointer

0’0

" Changes dereference and arithemetic behavior

struct BlockiInfo {
size_t sizeAndTags;

struct BlockInfo* next;
struct BlockInfo* prev;

};
typedef struct BlockInfo BlocklInfo;

BlockInfo *newBlock;

I

S~

Cast b into char * to
do unscaled addition

Iint x; Cast back into

BlockInfo *b; BlockInfo * to use
as BlockIn¥o struct

newBlock = (Blockinfo *) (¢ (char *) b + x);

-

s|n|p

S|IN|p

14

O 8 16 24 X

W UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Type-safe casting in Java

+ Can only cast compatible object references

= Based on class hierarchy class ggg;efﬁﬁgds vehicle {

}

class Car extends Vehicle {
int wheels;

class Object { class Vehicle {
S —— int passengers;
} } 3

Vehicle v
Boat bl
Car cl

new Vehicle(); // super class of Boat and Car
new Boat(); // |--> sibling
new Car(); // |--> sibling

Vehicle vl
Vehicle v2

new Car();
vl;

Car c2 new Boat();
Car c3 = new Vehicle();
Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) bil;

15

WA/ UNIVERSITY of WASHINGTON L27: JavaandC| CSE351, Autumn 2016

Type-safe casting in Java

+ Can only cast compatible object references

= Based on class hierarchy class ggg;efﬁﬁgds vehicle {

}

class Car extends Vehicle {
int wheels;

class Object { class Vehicle {
S —— int passengers;
} } 3

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat bl = new Boat(); // |--> sibling

Car cl = new Car(Q); // |--> sibling

Vehicle vl = new Car(Q); «——— / Everything needed for Vehicle also in Car

Vehicle v2 = vl; +«—— / Vvlisdeclared as type Vehicle

Car c2 = new Boat(); +«—— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle(); «—— X Compiler error: Wrong direction — elements Car
not in Vehicle (wheels)

Boat b2 = (Boat) v; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car c4 = (Car) v2; «—— / V2 refers to a Car at runtime

Car c5 = (Car) bil; +«— X Compiler error: Unconvertable types — b1 is

declared as type Boat "

W UNIVERSITY of WASHINGTON

L27: Javaand C |

Java Object Definitions

CSE351, Autumn 2016

class Point {

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);
}
}

Point p = new PolInt();<

—

double x; .
double y; } < fields
Point() { < constructor
X = 0;
y = 0;
}

+— method(s)

—

creation

17

WA UNIVERSITY of WASHINGTON L27: Javaand C |

CSE351, Autumn 2016

Java Objects and Method Dispatch

Point object
header vtable’ptr X y
v
vtable for class Point: o—
&) code for Point() code for samePlace()
q Point object
header vtable‘ptr X y

Virtual method table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
" One table per class

» Object header : GC info, hashing info, lock info, etc.
= Why no size?

18

WA/ UNIVERSITY of WASHINGTON

Java Constructors

L27: Javaand C | CSE351, Autumn 2016

<+ When we call new: allocate space for object (data fields and

references), initialize to

Java:

zero/null, and run constructor method

C pseudo-translation:

Point p = new Point();

Point* p = Calloc(l sizeof(Point));
p->header = ..._;
p->vtable = &Point vtable;

p->vtable[0](p);

Point object

header vtable’ptr

v

vtable for class Point: o—
&) code for Point() code for samePlace()

19

WA/ UNIVERSITY of WASHINGTON

Java Methods

L27: Javaand C |

+ Static methods are just like functions

+ Instance methods:
" Can refer to this;

= Have an implicit first parameter for this; and
" Can be overridden in subclasses

G

» The code to run when calling an instance method is chosen at

runtime by lookup in the vtable

Java:
p.samePlace(q);

Point object

C pseudo-translation:

p->vtable[1](p, Q);

header | vtable .otr X

v

vtable for class Point:

fad

\

code for Point()

code for samePlace()

CSE351, Autumn 2016

20

WA UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Subclassing

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {
return false;
+
void sayH1() {
System.out.printin("hello™);

}

}

+» Where does “z” go? At end of fields of Point
= Point fields are always in the same place, so PoiInt code can run on
3DPo1nt objects without modification
+ Where does pointer to code for two new methods go?
= No constructor, so use default Pornt constructor
= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayH1”

21

WA UNIVERSITY of WASHINGTON L27: Javaand C | CSE351, Autumn 2016

Subclassing

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {
return false;
+
void sayH1() {
System.out.printin("hello™);

+
+
Z tacked on at end
3DPoint object ‘
header | vtable X y Z
sayH1 tackfd on at end Code for
4 ? sayH1
vtable for 3DPoint: | constructor ¢| samePlace flsayHi ¢
(not PolInt) / \

Old code for New code for
constructor samePlace -

WA/ UNIVERSITY of WASHINGTON

Dynamic Dispatch

Point object

L27: Javaand C | CSE351, Autumn 2016

header | vtable ptr

Poi1nt vtable:

7]

code for Point’s samePlace()

\
P> 2?7?77 k}

code for Point()

3DPoint object
header | vtable X y Z
—»| code for sayHi()
3DPoint vtable: o
code for 3DPoint’s samePlace()
Java: C pseudo-translation:

Point p = ?2?7;
return p.samePlace(q);

// works regardless of what p 1s
return p->vtable[1](p, 9);

23

W UNIVERSITY of WASHINGTON : CSE351, Autumn 2016

Ta-da!

+ In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vtable[1](p,q)

" |n the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

= Dispatch determined by p, not the class that defined a
method

24

WA UNIVERSITY of WASHINGTON

L27: Javaand C |

Practice Question

CSE351, Autumn 2016

» Assume: 64-bit pointers and that a Java object header is 8 B
» What are the sizes of the things being pointed at by ptr_cC

and ptr_j?
struct c { class jobj {
int 1; int 1;
char s[3]; String s = “hi’’;
int aJ3]; int][] a = new Int[3];
struct c *p; jobj p;
}; ks
struct c* ptr_c; jobj ptr_j = new jobj(Q);

25

