WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2016

Memory Allocation il
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat

Thomas Neuman

Waylon Huang https://xkcd.com/835/
Xi Liu
Yufang Sun

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Administrivia

+» Homework 4 due today @ 11:45pm
%~ Lab 5due Dec.9 @ 11:45pm

" New Lab 5 videos on website!

+ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
" Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
" Cumulative (midterm clobber policy applies)

" You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet

= Reference sheet on website & passed out today

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

Root nodes Q Q Q

Heap nodes O reachable

not reachable

(garbage)
O
O

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L26: Memory Allocation ||

Garbage Collection

» Dynamic memory allocator can free blocks if there are
no pointers to them

+» How can it know what is a pointer and what is not?

+» We’'ll make some assumptions about pointers:

= Memory allocator can distinguish pointers from non-
pointers

= All pointers point to the start of a block in the heap

= Application cannot hide pointers
(e.g. by coercing them to an INt, and then back again)

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Classical GC Algorithms

+» Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
+ Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
+ Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
+ Generational Collectors (Lieberman and Hewitt, 1983)

"= Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

« For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIi CSE351, Autumn 2016

Mark and Sweep Collecting

+ Can build on top of mal loc/free package

= Allocate using mal loc until you “run out of space”

+» When out of space:
= Use extra mark bit in the header of each block

= Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

NOt

\ 4 /_} Arrows are NOT

Before mark E@ \ _I [free list pointers]

AN

After mark I: I I |2 I) r] Mark bit set

AN
\

After sweep LW free | |]
6

W UNIVERSITY of WASHINGTON L26: Memory Allocation ||

CSE351, Autumn 2016

Assumptions For a Simple Implementation

[Non-testable]
» Application can use functions to allocate memory: Material

= pb=new(n) returns pointer, b, to new block with all locations cleared

= p[1] read location 1 of block b into register

= p[i]=Vv write V into location 1 of block b

» Each block will have a header word (accessed at b[-1])

Functions used by the garbage collector:

= 1s_ptr(p) determines whether p is a pointer to a block

= length(p) returns length of block pointed to by p, not including
header

= get roots() returnsallthe roots

W UNIVERSITY of WASHINGTON L26: Memory Allocation ||

Mark

CSE351, Autumn 2016

Non-testable
Material

« Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
iIf (lis_ptr(p)) return;
iIT (markBitSet(p)) return;
setMarkBit(p);

mark(pLil);
return;

for (i=0; i<length(p); i++)

// p: some word in a heap block
// do nothing 1f not pointer

// check 1t already marked

// set the mark bit

// recursively call mark on

// all words 1In the block

\

root
/\¥ 4//’"\]>T_
Before mark I: I I zl _I

After mark

\4

m_l Mark bit set

W UNIVERSITY of WASHINGTON

Sweep

L26: Memory Allocation llI

«» Sweep using sizes in headers

CSE351, Autumn 2016

Non-testable
Material

free(p);

}
}

ptr sweep(ptr p, ptr end) {
while (p < end) {
It (markBitSet(p))
clearMarkBit(p);

p += length(p);

// ptrs to start & end of heap
// while not at end of heap
// check 1T block
// 1T so, reset mark bit

else 1T (allocateBitSet(p)) // it not marked, but allocated

// Tree the block

// adjust pointer to next block

1S marked

After mark

ammm

—

N

After sweep |_

fre

[1A Tefe T TT 71

Mark bit set

WA UNIVERSITY of WASHINGTON L26: Memory Allocation ||

CSE351, Autumn 2016

Non-testable]

Conservative Mark & Sweep in C [

+» Would mark & sweep work in C?

= IS _ptrdetermines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)

Makes it tricky to find all allocated blocks in mark phase

ptr
header 1

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

" |nJava, all pointers (i.e. references) point to the starting address of an
object structure — the start of an allocated block

10

WA UNIVERSITY of WASHINGTON

Memory-Related Perils and Pitfalls in C

Prog stop

L26: Memory Allocation llI

Slide

Possible?

CSE351, Autumn 2016

Security

Flaw?

Bad order of operations

Bad pointer arithmetic

Dereferencing a non-pointer

Freed block — access again

Freed block — free again

Memory leak — failing to free memory

No bounds checking

Off-by-one error

Reading uninitialized memory

Referencing nonexistent variable

Wrong allocation size

11

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 12)

/

+ The classic scant bug
= Int scanf(const char *format)

int val;

scanf("'%d', val);

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

12

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Find That Bug! (Slide 13)

/* return y = Ax */
int *matvec(int **A, iInt *x) {
int *y = (int *)malloc(N*sizeof(int));
int 1, j;
for (1=0; 1<N; 1++)
for (J=0; jJ<N; j++)
y[i]l += Al * xpl:

return vy,

}

- A'is NxN matrix, X is N-sized vector (so product is vector of size N)
- N defined elsewhere (#defi1ne)

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

13

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 14)

int **p;
p = (int **)malloc(N * sizeof(int));

for (1=0; 1I<N; 1++) {
p[1] = (int *)malloc(M * sizeof(int));

ks
- N and M defined elsewhere (#defi1ne)

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

14

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 15)

int **p;

= (int *)malloc(N * sizeof(int*));

for (i=0; i<=N; i++) {
p[i] = (int *)malloc(M * sizeof(int));
+
Error Prog stop Security flaw Fix:

Type: Possible? Possible?

15

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2016

Find That Bug! (Slide 16)

char s[8];
Int 1;

gets(s); /* reads “123456789” from stdin */

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

16

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 17)

Int *search(int *p, Int val) {

while (p && *p != val)
p += sizeof(int);

return p;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

17

WA/ UNIVERSITY of WASHINGTON

L26: Memory Allocation llI

Find That Bug! (Slide 18)

}

Int* getPacket(int** packets,
Int* packet;

packet = packets|O];
packets[0] = packets[*size - 1];

*si1ze--;

int* size) {

// what 1s happening here?

reorderPackets(packets, *size);

return packet;

{

« ‘—=="and “*’ operators have same precedence and associate
from right-to-left, so —— happens first

Error
Type:

Prog stop
Possible?

Security flaw
Possible?

Fix:

CSE351, Autumn 2016

18

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Autumn 2016

Find That Bug! (Slide 19)

int* foo() {
int val;

return &val;

}

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

19

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 20)

X = (int*)malloc(N * sizeof(int));
<manipulate x>
free(X);

y = (int*)malloc(M * sizeof(int));
<manipulate y>
free(X);

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

20

WA/ UNIVERSITY of WASHINGTON L26: Memory Allocation IIl CSE351, Autumn 2016

Find That Bug! (Slide 21)

X = (int*)malloc(N * sizeof(int));
<manipulate x>
free(X);

y = (int*®)malloc(M * sizeof(int));
for (1=0; 1I<M; 1++)
yL1]l = x[i]++;

Error Prog stop Security flaw Fix:
Type: Possible? Possible?

21

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L26: Memory Allocation ||

Find That Bug! (Slide 22)

typedef struct L {
int val;
struct L *next;
} list;

void foo() {
list *head = (list *) malloc(sizeof(list));
head->val = O;
head->next = NULL;
<create and manipulate the rest of the list>

free(head);
return;
by
Error Prog stop Security flaw Fix:

Type: Possible? Possible?

22

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Dealing With Memory Bugs

+» Conventional debugger (gdb)
" Good for finding bad pointer dereferences
®" Hard to detect the other memory bugs

+» Debugging mal loc (UToronto CSRI mal loc)

= Wrapper around conventional mal loc

= Detects memory bugs at mal loc and free boundaries
- Memory overwrites that corrupt heap structures
- Some instances of freeing blocks multiple times
- Memory leaks
" Cannot detect all memory bugs
- Overwrites into the middle of allocated blocks
- Freeing block twice that has been reallocated in the interim
- Referencing freed blocks

23

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Dealing With Memory Bugs (cont.)

+» Some mal loc implementations contain checking
code

® Linux glibc malloc: setenv MALLOC CHECK 2
®= FreeBSD: setenv MALLOC OPTIONS AJR

% Binary translator: valgrind (Linux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
" Can detect all errors as debugging mal loc

" Can also check each individual reference at runtime
- Bad pointers
- Overwriting

- Referencing outside of allocated block

24

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

What about Java or ML or Python or ...?

+» In memory-safe languages, most of these bugs are

L)

impossible

= Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

= Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
one?

25

w UNIVERSITY of WASHINGTON L26: Memory Allocation Il CSE351, Autumn 2016

Memory Leaks with GC

. Not because of forgotten free — we have GC!
» Unneeded “leftover” roots keep objects reachable

» Sometimes nullifying a variable is not needed for correctness
but is for performance

» Example: Don’t leave big data structures you’re done with in a
static field

Root nodes Q Q Q
Heap nodes $ \ O reachable

not reachable
(garbage)

O

26

