w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Memory Allocation I
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:

Chris Ma Hunter Zahn John Kaltenbach Kevin Bi
Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang
Xi Liu Yufang Sun
WHAT DO YoU THINK BEST GUESS FOR THIS
THAT CLDUD LDOKS LIKE? IMAGE: CLOUD

GOOGLE —» SEARCH BY IMAGE

b

N [UPLOADING.....] KEEP TRYING,
‘AP LL\ GOOGLE.
) \

i

i i

http://xkcd.com/1444/

=

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Administrivia

+» Homework 4 due Friday @ 11:45pm
%~ Lab 5due Dec.9 @ 11:45pm

+ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
= Combined for both lectures
" Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
" Cumulative (midterm clobber policy applies)

" You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation I

Peer Instruction Question

+ Which allocation strategy and requests
removes external fragmentation in this

Heap? B3 was the last fulfilled request.

= http://PollEv.com/justinh
(A) Best-fit:

mal loc(50), malloc(50)
(B) First-fit:

mal loc(50), malloc(30)
(C) Next-fit:

malloc(30), malloc(50)
(D) Next-fit:

mal loc(50), malloc(30)

1

50

10
30

10

50

50

Start of heap

CSE351, Autumn 2016

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Implicit Free List Review Questions

16/0 16/0/16/1 16/124/0 24/016/1 16/1

» What is the block header? What do we store and how?
» What are boundary tags and why do we need them?

+» When we coalesce free blocks, how many neighboring blocks
do we need to check on either side? Why is this?

» If | want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

= 4-byte word (free)

Keeping Track of Free Blocks

= 4-byte word (allocated)

1) Implicit free list using length — links all blocks using math
" No actual pointers, and must check each block if allocated or free

- A R
- ~
- ' Ao~ »

20 16 24 8

2) Explicit free list among only the free blocks, using pointers

/_\

20 16 24 8

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within
each free block, and the length used as a key

WA UNIVERSITY of WASHINGTON

Explicit Free Lists

Allocated block:

L25: Memory Allocation I

Free block:

size

next

prev

size a
payload and

padding

size a

(same as implicit free list)

size

Use list(s) of free blocks, rather than implicit list of al/l blocks
" The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Review: Doubly-Linked Lists

« Linear Root o'/\o o’@p o'/}\\/ /\\|/p O
"= Needs head/root pointer
= First node prev pointer is NULL
= |Last node next pointer is NULL
" Good for first-fit, best-fit

Start .'/\.\ 6 .'/\ /\\/\’\.
+ Circular \ I

= Still have pointer to tell you which node to start with

= No NULL pointers (term condition is back at starting point)
" Good for next-fit, best-fit

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Explicit Free Lists

+ Logically: doubly-linked list

> I
> >
A < B < C
< <

—

+ Physically: blocks can be in any order

B
v

/ Forward (next) links

="

16 —7 16|16 1624 /| ~_ 24116 1616 16

C _/
‘K Back (prev) links

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before

=

After
(with splitting)

1Y

malloc(..)

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before

=

After
(fully allocated)

malloc(..)

10

W UNIVERSITY of WASHINGTON L25: Memory Allocation ||

CSE351, Autumn 2016

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

= LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time

- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy

- Insert freed blocks so that free list blocks are always in address order:

address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

11

WA UNIVERSITY of WASHINGTON

L25: Memory Allocation I

Coalescing in Explicit Free Lists

Case 1

Allocated

Block being freed ——

Allocated

CSE351, Autumn 2016

Case 4

Free

Case 2 Case 3
Allocated Free
Free Allocated

Free

+» Neighboring free blocks are already part of the free

list

1) Remove old block from free list

2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

+» How do we tell if a neighboring block if free?

12

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 1) [Showm but don'

Before free(p)

Root LI O

. Insert the freed block at the root of the list

After

— VY

13

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 2) [Showm but don'

Before free(p)

f

%o

- Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

Root ' O

o ¢
h

14

WA/ UNIVERSITY of WASHINGTON

L25: Memory Allocation I CSE351, Autumn 2016

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 3) [Showm but don'

Before

free(®)

Root

!

!

%o

- Splice predecessor block out of list, coalesce both memory

blocks, and insert the new block at the root of the list

After

Root H

o <«

O

15

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 4) [Showm but don'

Before free(®)
o ®

Root iI 11 %o

O
. Splice predecessor and successor blocks out of list, coalesce all

3 memory blocks, and insert the new block at the root of the
lict
After

Root H

16

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Do we always need the boundary tag?

Allocated block: Free block:
Size a Size a
next
payload and P
padding
Size a Size a

(same as implicit free list)

+» Lab 5 suggests no...

17

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks

« Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

18

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

= 4-byte word (free)

Keeping Track of Free Blocks

= 4-byte word (allocated)

1) Implicit free list using length — links all blocks using math
" No actual pointers, and must check each block if allocated or free

- A R
- ~
- ' Ao~ »

20 16 24 8

2) Explicit free list among only the free blocks, using pointers

/\

20 16 24 8

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
19

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list
+ Organized as an array of free lists

Size class
(in bytes)

8

\ 4
\ 4
\ 4

v
v

16

l

24-32

40-inf —

+ Often have separate classes for each small size
+ For larger sizes: One class for each two-power size

20

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

SeglList Allocator

«» Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n
= |f an appropriate block is found:

- [Optional] Split block and place free fragment on appropriate list
" |f no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using Sbrk)

"= Place remainder of additional heap memory as a single free

block in appropriate size class
21

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

SeglList Allocator

« Have an array of free lists for various size classes

+ To free a block:
= Mark block as free
" Coalesce (if needed)
" Place on appropriate class list

22

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

" First-fit search of seglist approximates a best-fit search of
entire heap

= Extreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

"= Don’t need to use space for block size for the fixed-size
classes

23

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Allocation Policy Tradeoffs

Data structure of blocks on lists

= |mplicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!

*

+» Placement policy: first-fit, next-fit, best-fit

>

" Throughput vs. amount of fragmentation

*

When do we split free blocks?

®" How much internal fragmentation are we willing to tolerate?

*

When do we coalesce free blocks?
" Immediate coalescing: Every time free is called

L)

= Deferred coalescing: Defer coalescing until needed

- e.g. when scanning free list for mal loc or when external

fragmentation reaches some threshold
24

WA/ UNIVERSITY of WASHINGTON

L25: Memory Allocation I

CSE351, Autumn 2016

More Info on Allocators

+ D. Knuth, “The Art of Computer Programming”, 2"°
edition, Addison Wesley, 1973

" The classic reference on dynamic storage allocation

+» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
"= Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

25

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2016

Wouldn’t it be nice...

+ If we never had to free memory?
+» Do you free objects in Java?

= Reminder: implicit allocator

26

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2016

Garbage Collection (GC)

(Automatic Memory Management)

+ Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory
void foo() {

int* p = (int*) malloc(128);
return; /* p block 1s now garbage! */

}

+» Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

+ Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

27

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L25: Memory Allocation ||

Garbage Collection

+» How does the memory allocator know when memory

can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

"= But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

28

