WA UNIVERSITY of WASHINGTON

L24: Memory Allocation |

Memory Allocation |

CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

Adapted from
https://xkcd.com/1093/

CSE351, Autumn 2016

WHEN WILL WE FORGET?

BASED ON VS (OENSUs (BUREAV
NATIONAL FOPULATION ROTECTIONS

PEAIMING WE DONT REMEMBER CULTURAL
EVENTS FROM BEFORE AGE 5ok 6

BY THIS | THE MAJORTY OF AMERICANS
YEAR: | WIL BE TOOYONG T REMEMBER:

206 | FETURN OF THE 7EDY RELERSE.
2017 | THE FIRST APALE MACINTOSH
2018 | New (oxE

204 | CHAUENGER

2020 | CHERNOBYL

221 | BAK MONDAY

2022 | THE REAGAN PRESIDENGY
2075 | THE BERUN WAL

2024 | HAMMERTME

2025 | THE SOVIET UNION

20% | THE LA RioTS

2027 | LORENA BORRITT

2028 | THE FORREST GUMP RELEPSE.
2029 | THE RWANDAN GENOCIDE

2030 | 0T SIMPSON'S TRIAL

238 | ATIME BEFORE FACERODK
2039 | WY's Z LovE THE s

2040 | HURRICANE KATRINA

2041 | THE PLANET Pwro

2042 | THE FIRST iFHONE

o | ENYTHNG EYBARRASSING
YOU DO ToDAY

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Administrivia

% Lab 4 due today @ 11:45pm
+» Homework 4 due Friday @ 11:45pm
» Lab 5 released today (on Mem Alloc), due Dec. 9

+ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
"= Combined for both lectures
" Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
" Cumulative (midterm clobber policy applies)

" You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet

W UNIVERSITY of WASHINGTON

Roadmap
C:

L24: Memory Allocation |

Java:

car *c = malloc(sizeof(car));

c->miles = 100;
c->gals = 17;

Car ¢ = new Car(Q);

c.setMiles(100);
c.setGals(17);

CSE351, Autumn 2016

float mpg = get_mpg(c); float mpg =
free(c); c.getMPGQ);
Assembly get_mpg:
i pushg %rbp :
language: novQ wrsp. %rbp Memory allocation
popq %rbp
ret |
\ 4
Machine 0111010000011000
de: 100011010000010000000010
coae. 1000100111000010
110000011111101000011111
Computer

system:

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Multiple Ways to Store Program Data

+ Static global data

" Fixed size at compile-time

= Entire lifetime of the program | Vvo1d foo(int n) {

int tmp;
(loaded from executable) int local array[n]:

int array[1024];

= Portion is read-only

(e.g. string literals) Int* dyn = _ _
(int®)malloc(n*sizeof(int));

« Stack-allocated data }

" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)
< Dynamic (heap) data

= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Memory Allocation

<~ Dynamic memory allocation
" Introduction and goals

L)

= Allocation and deallocation (free)
" Fragmentation

>

Explicit allocation implementation

L)

= Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

>

» Implicit deallocation: garbage collection

o

Common memory-related bugs in C

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Dynamic Memory Allocation

+» Programmers use dynamic memory allocators to
acquire virtual memory at run time User stack

" For data structures whose size f ‘
(or lifetime) is known only at runtime Heap (via mal loc)

= Manage the heap Of a process’ Uninitialized data (. bsS)

virtual memorv: Initialized data (.data)
y: Program text (. text)

+ Types of allocators

= Explicit allocator: programmer allocates and frees space
- Example: malloc and freeinC

= Implicit allocator: programmer only allocates space (no free)

- Example: garbage collection in Java, Caml, and Lisp

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack
ignored here) f ‘
Top of heap
Heap (via mal loc) (brk ptr)

Uninitialized data (. bsS)
Initialized data (.data)
Program text (. text)

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Allocating Memory in C

+ Needto#iInclude <stdlib.h>
« void* malloc(size_t size)
= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==0

= Different blocks not necessarily adjacent

+» Good practices:
= ptr = (int*) malloc(n*sizeof(int));
- si1zeoT makes code more portable

- voird¥* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Allocating Memory in C

+ Needto#iInclude <stdlib.h>
» vord* malloc(size_t size)
= Allocates a continuous block of S1ze bytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==0
= Different blocks not necessarily adjacent

+» Related functions:
= void* calloc(size t nitems, size t size)
- “Zeros out” allocated block
= void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)
= void* sbrk(intptr_t increment)
- Used internally by allocators to grow or shrink the heap

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Freeing Memory in C

+ Needto#iInclude <stdlib.h>
» voild free(void* p)
= Releases whole block pointed to by p to the pool of available memory

= Pointer p must be the address originally returned by m/c/realloc
(i.e. beginning of the block), otherwise throws system exception

= Don’t call free on a block that has already been released or on NULL

10

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Memory Allocation Example in C

oid foo(int n, 1nt m) {

int 1, *p;

p = (lnt*) malloc(n*sizeof(int)); /* allocate block of nints */

iIT (p == NULL) { /™ check for allocation error */
perror("'malloc');
ex1t(0);

}

for (1=0; i1<n; 1++) /™ initialize int array */
pL1] =1

/> add space for m ints to end of p block */

= (int*) realloc(p,(n+tm)*sizeof(int));

iIT (p == NULL) { /™ check for allocation error */
perror(“'realloc');
ex1t(0);

+

for (I=n; 1 < n+m; 1++) /™ initialize new spaces */
p[1] = 1

for (1=0; i<n+m; 1++) /™ print new array */
printf(C"%d\n", p[i]);

free(p); /> freep™/

}

11

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Notation Node (these slides, book, videos)

+» Memory is drawn divided into words
= Each word can hold an 1nt (32 bits/4 bytes)

= Allocations will be in sizes that are a multiple of words,
i.e. multiples of 4 bytes

" |n pictures in slides, book, videos : = one word, 4 bytes
\ J \ J
T 1
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

12

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

= 4-byte word

Allocation Example

pl = malloc(16)
p2 = malloc(20)
p3 = malloc(24)
free(p2)

p4 = malloc(8)

13

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Constraints (interface/contract)

+ Applications
= Canissue arbitrary sequence of mal loc and free requests
" Must never access memory not currently allocated

" Must never free memory not currently allocated

« Also must only use Free with previously mal loc’ed blocks (not, e.g., stack
data)

+ Allocators
= Can’t control number or size of allocated blocks
= Must respond immediately to mal lOcC (i.e. can’t reorder or buffer)
= Must allocate blocks from free memory (i.e. blocks can’t overlap — Why not?)
= Must align blocks so they satisfy all alignment requirements

= Can’t move the allocated blocks (i.e. compaction/defragmentation is not
allowed — Why not?)

14

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Performance Goals

+» @Goals: Given some sequence of mal loc and free
requests Ry, R4, ..., Ry, ..., R,;_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

1) Throughput
" Number of completed requests per unit time

= Example:

- |If 5,000 mal loc calls and 5,000 fFree calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Performance Goals

+ Definition: Aggregate payload P,
= malloc(p) results in a block with a payload of p bytes

= After request R;, has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size Hy,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
= Defined as Uy, = (ma}cx P;)/H, after k+1 requests
L<

" Goal: maximize utilization for a sequence of requests
" Why is this hard? And what happens to throughput?

16

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

= Two types: internal and external

+ Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

17

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload is smaller than the block

block
A
I B B I
Interna Interna
fragmentation ~ | ' payload ' fragmentation

«» Causes:
" Padding for alignment purposes

= QOverhead of maintaining heap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g., to return a big block to satisfy
a small request)

+ Easy to measure because only depends on past
requests

18

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

= 4-byte word

External Fragmentation

+» For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
®= That is, the aggregate payload is non-continuous
= (Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(24) Oh no! (What would happen now?)

+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become

problematic
19

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implementation Issues

» How do we know how much memory to free given
just a pointer?

» How do we keep track of the free blocks?

» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

20

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

= 4-byte word (free)

Knowing How Much to Free

= 4-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the block
- This word is often called the header field or header

= Requires an extra word for every allocated block

pO
pO = malloc(16) 20
block size data

free(p0)

21

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

= 4-byte word (free)

Keeping Track of Free Blocks

= 4-byte word (allocated)

1) Implicit free list using length — links all blocks using math
" No actual pointers, and must check each block if allocated or free

’——_s\ /’—5\\ =T T~
- O Asr " S a

20 16 24 8

2) Explicit free list among only the free blocks, using pointers

/\

20 16 24 8

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
22

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

° o . e.g. with 8-byte alignment,
|mp|ICIt Free LlStS possible values for size:
00001000 = 8 bytes

_ 00010000 = 16 bytes

+» For each block we need: si1ze, is-allocated? | 00011000= 24 bytes

" Could store using two words, but wasteful -4

+ Standard trick
= |f blocks are alighed, some low-order bits of S1ze are always 0

= Use lowest bit as a allocated/free flag (fine as long as aligning to K>1)
= When reading S1ze, must remember to mask out this bit!

1word=4B
A
e
Format of size al a=1: allocated block If X is first word (header):
allocated and a=0: free block X = size | a;
free blocks:
payload size: blocksize (inbytes) | a = X & 1;

payload: applicationdata | size = x & ~1;
optional (allocated blocks only)
padding

23

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit Free List Example

+ Each block begins with header (size in bytes and allocated bit)

+ Sequence of blocks in heap (s1ze|al located):
810,161, 32|0, 16|1

Start of heap
Free word

2|0 161 01 Allocated word

80 |16

Allocated word

‘\/ unused

8 bytes = 2 word alignment

+ 8-byte alignment for payload
= May require initial padding (internal fragmentation)
= Note st1ze: padding is considered part of previous block

+ Special one-word marker (0| 1) marks end of list

= Zero Size is distinguishable from all other blocks
24

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

(*p) gets the block

° ° ° ° ° header

Implicit List: Finding a Free Block | ios1extacts the
al located bit

. . (*p & -2) extract

 First fit

= Search list from beginning, choose first free block that fits:

p = heap start;
while ((p < end) && // not past end
(Cp &1)] // already allocated
(p <= len))) { // too small
p=p+ (Cp & -2); // go to next block (UNSCALED +)
} // p points to selected block or end

= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start

N

180 [16]1

Free word

Allocated word

16|1

Allocated word
unused

25

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit List: Finding a Free Block

+» Next fit

= Like first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

% Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

26

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit List: Allocating in a Free Block

+» Allocating in a free block: splitting

= Since allocated space might be smaller than free space, we
might want to split the block

Assume pPtr points to a free block and has unscaled pointer arithmetic

void split(ptr b, int bytes) { // bytes = desired block size
Int newsize = ((bytes+7) >> 3) << 3; // round up to multiple of 8
int oldsize = *b; // why not mask out low biIt?
*b = newsize; // initially unallocated

IT (newsize < oldsize)
*(btnewsize) = oldsize - newsize; // set length In remaining

} // part of block (UNSCALED +)
malloc(12): 8”: Z?q 5 ; 8”5 Free word
ptr b = find(12+4) ’ | 5 5 |
split(b, 12+4) /\b/_\/\ Allocated word
allocate(b) Newly-allocated
81 |16]1 8|0 8|1 word

27

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
" void free(ptr p) {*(p-WORD) &= -2;}
" But can lead to “false fragmentation”

8|0
8|1: 16|1: T : | _ 8|1_ Free word
p Allocated word
/\/\/\ Block of interest
free(p) 81 160 80| |81
mal loc(20) Oops! There is enough free space, but

the allocator won’t be able to find it

28

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free

8|1: 16|1: T | 8|O_ 8|1_ Free word
| | P | | | Allocated word
/\/_\ Block of interest
free(p) 81| |24)0 8|0L 8|1
| | \ logically gone
void free(ptr p) { // p points to data
ptr b = p — WORD; // b points to block
*b &= -2; // clear allocated bit
ptr next = b + *b; // Tind next block (UNSCALED +)
IT ((Cnext & 1) == 0) // 1Tt next block 1s not allocated,
*b += *next; // add 1ts size to this block
}

+» How do we coalesce with the previous block?

29

W UNIVERSITY of WASHINGTON

L24: Memory Allocation | CSE351, Autumn 2016

Implicit List: Bidirectional Coalescing

% Boundary tags

[Knuth73]

= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

16/0 16/0/16/1 16/1/24/0 24/0(16/1 16/1
Format of \eader size a| a=1: allocated block
allocated and a=0: free block
free blocks: oad and
payload an .- .
vadding size: block size (in bytes)
payload: application data
Boundary tag size a| (allocated blocks only)

(footer)

30

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

31

YA/ UNIVERSITY of WASHINGTON

L24: Memory Allocation |

Constant Time Coalescing

Case 1

Case 3

m1l

m1l

n

m?2

m?2

m1

m1

m?2

m?2

mi_ 1l Case?2
m1l 1 |
n 0
n 0 |
m?2 1
m?2 1
n+ml 0 Case 4
n+m1 0 |
m?2 1
m?2 1

m1l

CSE351, Autumn 2016

m1l

m?2

m?2

m1l 1

m1l 1 |
n+m?2 0
n+m?2 0

m1

n+ml+m2 |0

m1

m?2

m?2

n+ml+m2 |0

WA/ UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2016

Implicit Free Lists Summary

+» Implementation is very simple
« Allocate cost:
= Linear time (in total number of heap blocks) in the worst case

» Free cost:
= constant time worst case, even with coalescing

+» Memory utilization:
= Will depend on placement policy (first-fit, next-fit, or best-fit)

+» Not used in practice for mal loc/free because of linear-time
allocation

= Used in some special purpose applications

+ Concepts of splitting and boundary tag coalescing are general
to all (?) allocators

33

