W UNIVERSITY of WASHINGTON

Virtual Memory lll

CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

L23: Virtual Memory llI CSE351, Autumn 2016

IVEGoT..

CHEERIOS

WITH A SHOT
CF'.I'ERI‘"!IJ'I‘I-I

AT LEAST IT5 BEMER ARE THESE CMON, GUYS, RE PANENT: IN A
THAN THE QUAILEGGS SKITTLES
IN WHIPPED CREAM AND @Qﬁ.{z}? GENEN. ALGORITHM SHOULD CATCH
MSG FROM LAST TIVE. UP TOEXISTING RECIPES AND START

@%2

FEW HUNDRED MORE MEFLS, THE

\

[

N 7

.

|/ I

WEVE DECIDED TD DROP THE (S DEFRRTMENT FRoM QUR WEEKLY DINNER PARTY HOSTING ROTATION.

https://xkcd.com/720/

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory IlI CSE351, Autumn 2016

Administrivia

+» Lab 4 due Monday, Nov. 28

+ “Virtual section” on virtual memory over the break
"= Worksheet and solutions will be posted for extra practice

= Expect to see Justin’s past exam questions posted as well
- Find it at the bottom of the course schedule under the Final date

w UNIVERSITY of WASHINGTON L23: Virtual Memory IlI

Quick Review

What do Page Tables map?
VPN = PPN or disk addvess
Where are Page Tables located?
pnysical memory
How many Page Tables are there?
one per process
Can your program tell if a page fault has occurred?
No MM Yhrows pogefault ecception , pracess Just LaTs
What is thrashing?
excessive paging i /ot

True / Virtual Addresses that]are contiguous will always be

contiguous in physical memory X | x41

PG‘SQ Lmv\d\ary

CSE351, Autumn 2016

TLB stands for Translation lwkaside offe,~ and stores page table entries

CSE351, Autumn 2016

w UNIVERSITY of WASHINGTON L23: Virtual Memory IlI

Quick Review Answers

What do Page Tables map?

= VPN — PPN or disk address

Where are Page Tables located?

" |n physical memory

How many Page Tables are there?

® One per process

Can your program tell if a page fault has occurred?

= Nope, but it has to wait a long time

What is thrashing?

® Constantly paging out and paging in

True /: Virtual Addresses that are contiguous will always be
contiguous in physical memory

® Could fall across a page boundary

TLB stands for Translation Lookaside Buffer and stores page table entries

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory IlI

Review: Address Translation

+» VM is complicated, but also elegant and effective
= Level of indirection to provide isolated memory & caching

" TLB as a cache of page tables
Virtual Address

avoids two trips to memory |
for every memory access LB
Lookup
TLB Miss TLB Hit
Page Table | Protection
“Walk”] Check
Page not Page Access Access
in Mem []inMem | Denied | | Permitted
Page Fault Update Protection Physical
(OS loads page) TLB Fault Address
M \ / v \4
Find iIn Disk Find inI Mem SI1GSEGV Check cache
5

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON

L23: Virtual Memory llI

Memory Overview

» movl 0x8043ab, %rdi

CPU

Word

Cache

T\ v

Main memory

(DRAM) 7

_—

MMU

Line

TLB

Page =

Line

Disk

—Page

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ill CSE351, Autumn 2016

Context Switching Revisited

+» What needs to happen when the CPU switches
processes?
" Registers:

- Save state of old process, load state of new process
- Including the Page Table Base Register (PTBR)

" Memory:

- Nothing to do! Pages for processes already exist in memory/disk and
protected from each other

= TLB:

- Invalidate all entries in TLB — mapping is for old process’ VAs
= Cache:

- Can leave alone because storing based on PAs — good for shared data

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory IIi CSE351, Autumn 2016

Page Table Reality

« Just one issue... the numbers don’t work out for the
story so far!

+» The problerpL:lZL\tgse pa\a%entqlple for each process:

b\ M = 33 Lite
Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

How many page table entries is that?
1 PTE fv every virfual Page /Z/y\.’o /_\)
.

ZSZ‘*ZQ B wnaPT

=

About how long is each PTE?
R E D

Moral: Cannot use this naive implementation of the
virtual->physical-page mapping — it’'s way too big

W UNIVERSITY of WASHINGTON

L23: Virtual Memory llI

CSE351, Autumn 2016

This is extra
A Solution: Multi-level Page Tables |(non-testable)
material
Page table This is falled a page walk
base register VPN
{GAIE) /\A/\
Virtual Address
n- p-1 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k 1
page table page table page table
>) PZ .
=12 >
' L feonr)y —
TLB m_l \4 p‘l 2 0
PPN PPO
VPN [>| PTE
Physical Address
VPN [>| PTE
VPN [>| PTE

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ill CSE351, Autumn 2016

This is extra

Multi-level Page Tables (non-testable)

L)

material

A tree of depth k where each node at depth i has up to 2/
children if part i of the VPN has j bits

Hardware for multi-level page tables inherently more
complicated

= Butit’'s a necessary complexity — 1-level does not fit

Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory

= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

But now for a k-level page table, a TLB miss requires kK + 1
cache/memory accesses

" Fine so long as TLB misses are rare — motivates larger TLBs

10

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON

Practice VM Question

L23: Virtual Memory llI

% Our system has the following properties

a) Fill in the following blanks:

1 MiB of physical address space m=20
n=32
e = \S

4 GiB of virtual address space
32 KiB page size

4-entry fully associative TLB with LRU replacement

1 set

":}

A Entries in page table 2.0
2%-\0 & & pivtud y49es
5
| + TLBT bits PA
VPN TLBT /TLBT (ZW N
heve TBI=0

Minimum bit-width of
PTBR ¢ physic\ addrey o T

(4@

Max # of valid entries
in a page table &% pugeg in physical
wew oy
11

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ill CSE351, Autumn 2016

Practice VM Question

» One process uses a page-aligned square matrix
mat|] of 32-bit integers in the code shown below:

#define MAT SIZE = 2048=2"
for(int 1=0; I<MAT_SIZE; 1+)
mat[i*(MAT _SIZE+1)] =

b) What is the largest stride (in bytes) between
successive memory accesses (in the VA space)?

1 ‘\r\de\(

o[0 5 20M it =|20H*Y B= shoide]
l ZOWW

A

2*Ldﬂé ﬂa

D Gefres & %“no.\
- ()’(' ot rin

!

— 12

WA UNIVERSITY of WASHINGTON L23: Virtual Memory IIi CSE351, Autumn 2016

Practice VM Question
poge sizc =32K:8 =2YSB
» One process uses a page-aligned square matrix
mat|] of 32-bit integers in tgﬁ code shown below:
#define MAT_SIZE = 2048t =7"B
for(int 1=0; I<MAT_SIZE; 1++)
mat[1*(MAT_SIZE+1)] = 1;

c) What are the following hit rates for the first
execution of the for loop? (eume all & w11 storls on disk)

3/ =F5% TLB Hit Rate O% Page Table Hit Rate
A(ess po\‘“em‘. ﬁhg\t wrie 4o \ndex 3 o\\\y h(tess PT on 1LB Miss

neyve,- rcv‘.s'\‘\’ i"‘(h(c 5 (a\w\y; ncread hj) .
We awesy ‘€V’€ly o 6'(\-w,:}h-\(*e)taEHy (e \D’Caw}e_ W+[,] oM A‘S“J e,acl-\ 'pl\rs'l'
((ess “l‘b phge Couges ‘o@e _FG‘KH'

e6ch poge hdds 2°/2° 4 voos f midvin
Withix edn pue : MH’HH

13

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ili CSE351, Autumn 2016

BONUS SLIDES

For Fun: DRAMMER Security Attack
+» Why are we talking about this?

" Current: Announced in October 2016; Google released
Android patch on November 8

"= Relevant: Uses your system’s memory setup to gain
elevated privileges

- Ties together some of what we’ve learned about virtual memory and
processes

" Interesting: It’s a software attack that uses only hardware
vulnerabilities and requires no user permissions

14

WA UNIVERSITY of WASHINGTON L23: Virtual Memory IIi CSE351, Autumn 2016

Underlying Vulnerability: Row Hammer

+» Dynamic RAM (DRAM) has gotten denser over time

= DRAM cells physically closer and
use smaller charges

" More susceptible to “disturbance
errors” (interference)

+» DRAM capacitors need to be
“refreshed” periodically (~¥64 ms)

" Lose data when loss of power

= Capacitors accessed in rows DRAM cells

Activation target rows

+ Rapid accesses to one row can ™ Yeimrov
ﬂlp bltS in an adjacent rOWI By Dsimic (modified), CC BY-SA 4.0,

https://commons.wikimedia.org/w
B~ 100K to 1M times /index.php?curid=38868341

15

w UNIVERSITY of WASHINGTON L23: Virtual Memory IlI CSE351, Autumn 2016

Row Hammer Exploit

+» Force memory access by constantly
reading and then flushing the cache | hammertime:

_ mov (X), %eax
" clfTlush-flush cache line mov Evg (VZebx

- Invalidates cache line containing the clflush (X)
specified address clflush (Y)
- Not available in all machines or Jmp hammertime

environments

" Want addresses X and Y to fall in activation target row(s)

- Good to understand how banks of DRAM cells are laid out

« The row hammer effect was discovered in 2014

= Only works on certain types of DRAM (2010 onwards)
" These techniques target x86 machines

16

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory IlI

Consequences of Row Hammer

+» Row hammering process can affect another process

via memory
= Circumvents virtual memory protection scheme
" Memory needs to be in an adjacent row of DRAM

+» Worse: privilege escalation

= Page tables live in memory!
" Hope to change PPN to access other parts of memory, or
change permission bits

" Goal: gain read/write access to a page containing a page
table, hence granting process read/write access to all of

physical memory

17

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ill CSE351, Autumn 2016

Effectiveness?

+» Doesn’t seem so bad — random bit flip in a row of
physical memory

= Vulnerability affected by system setup and physical
condition of memory cells

+~ Improvements:

" Double-sided row hammering increases speed & chance
" Do system identification first (e.g. Lab 4)

-« Use timing to infer memory row layout & find “bad” rows

- Allocate a huge chunk of memory and try many addresses, looking for
a reliable/repeatable bit flip

= Fill up memory with page tables first
- Fork extra processes; hope to elevate privileges in any page table

18

w UNIVERSITY of WASHINGTON L23: Virtual Memory IlI CSE351, Autumn 2016

What’s DRAMMER?

+» No one previously made a huge fuss

" Prevention: error-correcting codes, target row refresh,
higher DRAM refresh rates

= Often relied on special memory management features
= Often crashed system instead of gaining control

+» Research group found a deterministic way to induce
row hammer exploit in a non-x86 system (ARM)

= Relies on predictable reuse patterns of standard physical
memory allocators

= Universiteit Amsterdam, Graz University of Technology, and
University of California, Santa Barbara

19

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ill CSE351, Autumn 2016

DRAMMER Demo Video

+ It's a shell, so not that sexy-looking, but still interesting

= Apologies that the text is so small on the video

20

L23: Virtual Memory llI CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON

How did we get here?

+» Computing industry demands more and faster storage
with lower power consumption

+ Ability of user to circumvent the caching system
= clflush is an unprivileged instruction in x86
= Other commands exist that skip the cache

+ Availability of virtual to physical address mapping

= Example: /proc/self/pagemap on Linux
(not human-readable)

+» Google patch for Android (Nov. 8, 2016)
= Patched the ION memory allocator

21

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Ili CSE351, Autumn 2016

More reading for those interested

<+ DRAMMER paper:
https://vvdveen.com/publications/drammer.pdf

+» Google Project Zero:
https://egoogleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

+ First row hammer paper:
https://users.ece.cmu.edu/~yoonguk/papers/kim-
iscald.pdf

+» Wikipedia:
https://en.wikipedia.org/wiki/Row hammer

22

