W UNIVERSITY of WASHINGTON

Processes
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

L20: Processes

DEAR VARIOUS PARENTS, GRANDPARENTS, CO-WORKERS,
AND OTHER ‘NOT COMPUTER PECRLE.

WE DON'T MAGICALLY KNOW HOW TO DO EVERYTHING IN EVERY
PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

FIND A
MENU ITEM OR £
BUTTON WHICH LOOKS THEM ALL.
REVATED TO WHAT
YOU WANT
Do.

GOOGLE THE NAME
OF THE PROGRAM
PLUS A FEW WORDS
RELATED To WHAT You
WANTTO DO, Fouow
ANY INSTRUCTIONS.

YOu BEEN
TRYING THI5 FOR
OVER HALF AN
HOUR?

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

https://xkcd.com/627/

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON : CSE351, Autumn 2016

Administrivia

+» Homework 3 due Friday @ 11:45pm
+ Lab 4 released today — cache runtimes and puzzles

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Processes

+ Processes and context switching

+» Creating new processes
= fork() andwairt()

« Zombies

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

What is a process? It’s an illusion!

4)
Process 1

Memory

Stack

Heap

Data
Code

CPU

Registers | %rip

Disk

Chrome.exe

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

What is a process?

+» Another abstraction in our computer system
"= Provided by the OS
" OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

+» What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

«» What is the difference between:

= A processor? A program? A process?

L20: Processes CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON

Processes

+» A process is an instance of a running program
" One of the most profound ideas in computer science

" Not the same as “program” or “processor”

+» Process provides each program with two key

abstractions: Memory
= |ogical control flow Stack

- Each program seems to have exclusive use of the CPU I-[i)Z?:

- Provided by kernel mechanism called context switching Code
" Private address space =

- Each program seems to have exclusive use of main memory

- Provided by kernel mechanism called virtual memory Registers

W UNIVERSITY of WASHINGTON

L20: Processes

What is a process?

CSE351, Autumn 2016

It’s an illusion!

Computer

Process 2

”CPU”

V

Process 1

”CPU”

CPU

Process 3

IICPUII

Process 4

“Memory”

Stack
Heap
Data
Code

IICPUII

Disk

-
/Applications/

Chrome.exe

Slack.exe

PowerPoint.exe

W UNIVERSITY of WASHINGTON

L20: Processes

What is a process?

CSE351, Autumn 2016

It’s an illusion!

Computer

Process 2

V

Process 1

Process 3

IICPUII

Process 4

“Memory”

Stack

ey Do
Code
“cpuU” “CPU”
Operating
System)
CPU
Disk [— ~
/Applications/
Chrome.exe Slack.exe PowerPoint.exe

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

+» Computer runs many processes simultaneously
= Applications for one or more users
- Web browsers, email clients, editors, ...

= Background tasks
- Monitoring network & I/O devices

YA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Multiprocessing: The Reality

CPU

Registers

Memory
Stack Stack Stack
Heap Heap Heap
: Data : Data o Data
: Code : Code Code
Saved Saved Saved
: registers : registers registers

+ Single processor executes multiple processes concurrently
® Process executions interleaved, CPU runs one at a time
= Address spaces managed by virtual memory system (later in course)

= Execution context (register values, stack, ...) for other processes saved in
memory 10

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L20: Processes

Multiprocessing

Memory
Stack Stack Stack
Heap Heap Heap
Data : Data o Data
: Code : Code Code
Saved Saved Saved
: registers : registers registers
: CPU
Registers

+» Context switch
1) Save current registers in memory

11

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L20: Processes

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data o Data
Code : Code : Code
Saved Saved Saved
registers : registers : registers
[cpu
Registers

+» Context switch
1) Save current registers in memory
2) Schedule next process for execution

12

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L20: Processes

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data o Data
Code : Code : Code
Saved Saved Saved
registers : registers : registers
[cpu
Registers

+» Context switch
1) Save current registers in memory
2) Schedule next process for execution

3) Load saved registers and switch address space
13

YA/ UNIVERSITY of WASHINGTON

L20: Processes

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data ces Data

Code Code Code

Saved Saved Saved
registers registers registers

cPU CPU- |1 &« Multicore processors
Registers Registers :

CSE351, Autumn 2016

= Multiple CPUs (“cores”) on single chip

= Share main memory (and some of the
caches)

= Each can execute a separate process

- Kernel schedules processes to cores

- Still constantly swapping processes

14

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Assume only one CPU

Concurrent Processes

+ Each process is a logical control flow

+» Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time
= Otherwise, they are sequential

+» Example: (running on single core)
" Concurrent: A&B,A&C

= Sequential: B&C Process A Process B Process C

time

15

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Assume only one CPU

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time

" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C

User View

q

time

16

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel

" The kernel is not a separate process, but rather runs as part of a user

process
v
Kemel virtual memory invisible to
OxFFFF FFFF FFFF user code
+ In x86-64 Linux: (created at run time) . -
7 ~— %rsp (stack pointer)
= Same address in each process A

refers to same shared e
i hared librari
memory location shared libraries

I

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Assume only one CPU

Context Switching

« Processes are managed by a shared chunk of OS code
called the kernel
" The kernel is not a separate process, but rather runs as part of a user
process
+» Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

I user code

5\'051,,
7/ ;
‘0n kernel code } context switch

time
user code

kernel code } context switch

user code

18

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Processes

+» Processes and context switching

+» Creating new processes
= fork() andwait()

« Zombies

19

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Creating New Processes & Programs

() ()
Process 1 Process 2
“Memory” “Memory”
Stack Stack
W | Heap o rk() Heap
Data > Data
g ’“i S Code Code
l \
e B uCPUH HCPU”
Registers 4 Registers
. J . J
exec*()
Chrome.exe

20

WA UNIVERSITY of WASHINGTON CSE351, Autumn 2016

Creating New Processes & Programs

+ fork-exec model (Linux):
" fork() creates a copy of the current process

= exec™*() replaces the current process’ code and address
space with the code for a different program
- Family: execv, execl, execve, execle, execvp, execlp

" fork() and execve() are system calls

% Other system calls for process management:
" getpid(Q)
" exit()
= wart(),wartpid()

21

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

fork: Creating New Processes

« pid_t fork(void)
= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)
= Returns O to the child process

= Returns child’s process ID (PID) to the parent process

« Child is almost identical to parent:

= Child gets an identical pid t pid = fork():
(but separate) copy of the | jF (pid == 0) {
parent’s virtual address printf('hello from child\n");
space } else {

= Child has a different PID printf("hello from parent\n™);
than the parent ¥

+» Tork s unique (and often confusing) because it is called once
but returns “twice”

22

W UNIVERSITY of WASHINGTON

Understanding fork

Process X (parent)

L20: Processes

» pid_t pid = forkQ):
1T (pid == 0) {
printf(""hello from child\n");
} else {
printf(""hello from parent\n');
+

CSE351, Autumn

Process Y (child)

2016

pid t pid = fork(Q);
iIfT (pid == 0) {

printf("*hello from child\n");
} else {

printf(""hello from parent\n');
}

23

W UNIVERSITY of WASHINGTON

L20: Processes

CSE351, Autumn

2016

Understanding fork

»

Process X (parent)

pid _t pid = fork();
1T (pid == 0) {

printf(""hello from child\n");
} else {

printf(""hello from parent\n');
+

pid_t pid = fork(Q); L
it (pid == 0) { pid = ¥

printf(""hello from child\n');

} else {
printf(C"'hello from parent\n™);
}

Process Y (child)

pid t pid = fork(Q);
iIfT (pid == 0) {

printf("*hello from child\n");
} else {

printf(""hello from parent\n');
}

pid_t pid = fork(Q); -
it (pid == 0) { pid = 0

printf("'hello from child\n");
} else {
printf(""hello from parent\n');

}

24

W UNIVERSITY of WASHINGTON

L20: Processes

CSE351, Autumn

2016

Understanding fork

»

Process X (parent)

pid _t pid = fork();
iIT (pid == 0) {
printf("*hello from
} else {
printf("*hello from
+

child\n");

parent\n'");

pid t pid = fork(Q);
1T (pid == 0) {
printf(""hello from

} else {
printf(""hello from
by

pid =Y

child\n");

parent\n'");

hello from parent

Process Y (child)

pid t pid = fork();

iIT (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

child\n");

parent\n'");

pid t pid = fork(Q);

iIT (pid == 0) {
printf(""hello from

} else {
printf(""hello from

}

pid=0

child\n");

parent\n'");

hello from child

Which one appears first?

25

Fork Example

void forkl() {

int x =1
pid _t pid = fork();
it (pid == 0)
printf("'Child has x = %d\n", ++x);
else

printf(""Parent has x = %d\n", --X);
printf("'Bye from process %d with x = %d\n', getpid(), X);

}

+» Both processes continue/start execution after fork
" Child starts at instruction after the call to Fork (storing into pid)

» Can’t predict execution order of parent and child
+» Both processes start with Xx=1

= Subsequent changes to X are independent

+ Shared open files: stdout is the same in both parent and child

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

26

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Modeling Tork with Process Graphs

+» A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

= Each vertex is the execution of a statement
= a— b means a happens before b

= Edges can be labeled with current value of variables
= printf vertices can be labeled with output

= Each graph begins with a vertex with no inedges

+ Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

27

W UNIVERSITY of WASHINGTON

Fork Example:

L20: Processes

CSE351, Autumn 2016

Possible Output

void forkl() {
Int X = 1,

else

= fork(Q);

= 0)

printf("'Parent has X
printf("'Bye from process %d with x = %d\n", getpid(), X);

printf("ChiId has x = %d\n",

= %d\n"",

++X) ;

-=X);

ks
X=2 Child Bye
4% P rintt P rintf
X=0 Parent Bye
x21 Fork 2 printf prihtf

28

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Note: the return values of Fork and
exec™ should be checked for errors

Fork-Exec

+ fork-exec model:
" fork() creates a copy of the current process

= exec™() replaces the current process’ code and address
space with the code for a different program
- Whole family of exec calls — see exec(3) and execve(2)

// Example arguments: path="/usr/bin/ls",
// argv[O0]=""/usr/bin/ls", argv[1l]=""-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[]) {
pid _t pid = fork();
iIT (pid = 0) {
printf("'Parent: created a child %d\n", pid);
} else {
printf("'Child: about to exec a new program\n'');
execv(path, argv);

¥
printf(""'This line printed by parent only!\n');

29

WA UNIVERSITY of WASHINGTON L20: Processes

CSE351, Autumn 2016

Exec-ing a new program

Ptack Very high-level
diagram of what
reas happens when you
— run the command
Code: /usr/bin/bash “Is” In a Linux shell:
parent l fork()\ child
S Stack
exec*()
>
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/Is

30

WA UNIVERSITY of WASHINGTON L20: Processes

CSE351, Autumn 2016

execve Example

Execute ““Zusr/bin/ls —1 1ab4” in child process using current
environment:

myargvfargc] = NULL
(argc == 3) | Waroviz] +— “lab4”
myargv] 1] +— “-1”
myargvjoO] +—— “/usr/bin/1s”
myargv > o 11
envp[n] = NULL
envp[n-1] +—> “PWD=/homes/iws/jhsia”
environ > envp[O] +—— “USER=jhsia

iIT ((pid = fork()) == 0) { /* Child runs program */
iIT (execve(myargv|[0O], myargv, environ) < 0) {
printf(""%s: Command not found.\n", myargv[0]);
exit(l);
+

}

Run the printenv command in a Linux shell to see your own environment variables

31

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Structure Of Null-terminated Bottom of stack

environment variable strings

the Stack when

Null-terminated

a hew program ___,| command-line arg strings

starts envp[n] == NULL
i envp[n-1] environ
_| (global var)
| envp[O]) Py
i argv[argc] = NULL 1 envp
i argv[argc-1] (in %rdx)
argv. | t--re argv[o0]
(in %rsi)
argc Stack frame for
: - libc start main
Joiiell) — — Top of stack

Future stack frame for

32

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

ex1t: Ending a process

» voird exit(int status)

" EXits a process

- Status code: 0is used for a normal exit, nonzero for abnormal exit

= atexit() registers functions to be executed upon exit

void cleanup(void) {
printf(''cleaning up\n'');

+

void fork2() {
atexit(cleanupzi
fork(Q);
ex1t(0);

}

— “cleanup” is a function pointer

33

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Processes

+» Processes and context switching

+» Creating new processes
= fork() andwairt()

« Zombies

34

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Zombies

+» When a process terminates, it still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+ Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then deletes zombie
child process

+» What if parent doesn’t reap?

" |f any parent terminates without reaping a child, then the orphaned
child will be reaped by 1n1t process (pid == 1)
Note: on more recent Linux systems, In1t has been renamed systemd

" |n long-running processes (e.g. shells, servers) we need explicit reaping

35

wal t: Synchronizing with Children

« Int wart(int *child _status)

= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

= [fchild _status !'=NULL, thenthe *child_status
value indicates why the child process terminated
- Special macros for interpreting this status — see manwait(2)

+» Note: If parent process has multiple children, walt
will return when any of the children terminates
= waltpid can be used to wait on a specific child process

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

36

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

wal t: Synchronizing with Children

void fork wairt() {
int child _status;

iIT (fork(Q == 0) {
printfF("'"HC: hello from child\n'");
exi1t(0);

} else {
printfF("'"HP: hello from parent\n");
wart(&child _status);
printf("'CT: child has terminated\n");

}
printf(''Bye\n"");
1 forks.c
HC exit
>@ >@
printf Feasible output: Infeasible output:
HC HP
CT HP CT
HP 3 Bye CT Bye

»®
fork printf wait printf Bye HC

37

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Process Management Summary

. Fork makes two copies of the same process (parent & child)

= Returns different values to the two processes
» eXxec™ replaces current process from file (new program)
" Two-process program:

- First Fork()
- if (pid == 0) { /* child code */} else { /* parent code */}

" Two different programs:
- First fork()
- if (pid == 0) { execv(...) } else { /* parent code */}

- waltorwaltpid used to synchronize parent/child execution
and to reap child process

38

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

Summary

< Processes

= At any given time, system has multiple active processes

" On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes

- Implemented using exceptional control flow
+ Process management
= fork: one call, two returns
= execve: one call, usually no return
= waltorwaltpid: synchronization
= exIt: onecall, noreturn

39

L20: Processes

CSE351, Autumn 2016

YA UNIVERSITY of WASHINGTON

BONUS SLIDES

Detailed examples:

» Consecutive forks

+» Nested forks

+» Zombie example

» wart() example

» waltprd() example

40

L20: Processes

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON

Example: Two consecutive Torks

void fork2() {
printf("'LO\Nn"");
fork();
printf("'L1\n"");
fork();
printf(''Bye\n"");

LO

Bye
»®
printf
L1 Bye
>@— > :_0
printf fork printf
Bye
pffhtf
L1 Bye

&
printf

>® >»®
fork printf

Feasible output:

LO
L1
Bye
Bye
L1
Bye
Bye

»> >»®
fork printf

Infeasible output:
LO

Bye

L1

Bye

L1

Bye

Bye

41

W UNIVERSITY of WASHINGTON

L20: Processes

CSE351, Autumn 2016

Example: Three consecutive forks

+» Both parent and child can continue forking

void fork3() {
printf("'LO\Nn"");
Tfork(Q);
printf("'L1\n"");
Tfork(Q);
printf("'L2\n"");
Tfork(Q);

printf("'Bye\n"");

LO

Bye

L2 | Bye

Bye

L1 |L2 | Bye
a Bye
L2 | Bye

Bye

L1 (L2 | Bye

42

W UNIVERSITY of WASHINGTON

L20: Processes CSE351, Autumn 2016

Example: Nested forks in children

void fork5(0) {

printf("'LO\Nn"");

i1IT (fork() == 0) {
printf("'L1\n"");
i1IT (fork() == 0) {

printf("'L2\n"");

+

}

printf(''Bye\n'");

LO
@ > #_.
printf fork printf

Feasible output: Infeasible output:
LO LO

Bye Bye

L1 L1

L2 Bye

Bye Bye

Bye L2

43

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L20: Processes

} else {

linux> _/forks 7 & while (1); /* Infinite loop */

[1] 6639 }
Running Parent, PID = 6639 ¥

. - void fork7() {
Example: Zombie | ir ¢roro = o ¢
/* Child */
printf("Terminating Child, PID = %d\n",

ex1t(0);

printf("'Running Parent, PID = %d\n",

getpid());

getpid());

forks.c

Terminating Child, PID = 6640
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
Iinux> ps
PID TTY
6585 ttyp9 00:
6642 ttyp9 00:

PS shows child process as
“defunct”

Killing parent allows child to be
reaped by In1t

a4

YA/ UNIVERSITY of WASHINGTON

L20: Processes CSE351, Autumn 2016

Example:
Non-terminating

Child

void fork8() {
iIT (fork() == 0) {
/* Child */
printf("'Running Child, PID = %d\n",
getpid(Q));
while (1); /7* Infinite loop */
} else {
printf(""Terminating Parent, PID = %d\n",
getpid(Q));
ex1t(0);

forks.c

linux> _/forks 8

Terminating Parent, PID = 6675

Running Child, PID
Iinux> ps
PID TTY
6585 ttyp9
6676 ttyp9

6676

TIME
00:00:00
00:00:06
00:00:00

CMD
tcsh
1 (o] 1S

PS

6677 ttyp9
Iinux> kill 6676
Iinux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME
00:00:00
00:00:00

+ Child process still active even
though parent has terminated

L (4

» Must kill explicitly, or else will
keep running indefinitely

45

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

walt() Example

+ If multiple children completed, will take in arbitrary order

+ Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forkl0() {
pid t pid[N];
int 1;
int child_status;
for (i = 0; § < N; i++)
1T ((pid[1] = fork()) == 0)
ex1t(100+1); /* Child */
for (1 = 0; 1 < N; 1++) {
pid t wpid = wait(&child _status);
iIT (WIFEXITED(child _status))
printf(""'Child %d terminated with exit status %d\n',
wpid, WEXITSTATUS(child _status));
else
printf("'Child %d terminated abnormally\n", wpid);

WA/ UNIVERSITY of WASHINGTON L20: Processes CSE351, Autumn 2016

wartpid(): Waiting for a Specific Process

pid _t wartpid(pid _tpid, inté&status, intoptions)
= suspends current process until specific process terminates

= various options (that we won’t talk about)

void forkll() {
pid t pid[N];
int 1;
int child_status;
for (i = 0; § < N; i++)
1T ((pid[1] = fork()) == 0)
ex1t(100+1); /* Child */
for (1 = 0; 1 < N; 1++) {
pid t wpid = waitpid(pid[i], &child status, 0);
iIT (WIFEXITED(child _status))
printf(""'Chilld %d terminated with exit status %d\n',
wpid, WEXITSTATUS(child status));

else
printf("'Child %d terminated abnormally\n", wpid);

