WA/ UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example, System Control Flow
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:

Chris Ma Hunter Zahn John Kaltenbach Kevin Bi
Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang
Xi Liu Yufang Sun

T COULD RESTRUCTURE | | EH, SCREW G0D PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

OR ljSE ONE LITILE goto main_sub3;
;GDTDl INSTEAD. l‘ﬂ

; } ﬁ *COMPILE# r J_

http://xkcd.com/292/

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Administrivia

+» Homework 3 due Friday
+» Lab 4 released Wednesday
» Midterm Scores on Catalyst

" +6 from Gradescope score; please double-check
+» Midterm Clobber Policy

" Final will be cumulative (half midterm, half post-midterm)

" |f you perform better relative to the rest of the class on the
midterm portion of the final, you replace your midterm
score

MT stddev
= Replacement score = (Fy;t score — Fyr avg) X + MT mean
FumT stddev

= Course policies on website have been updated

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Anatomy of a Cache Question

+» Cache questions come in a few flavors:
1) TIO Breakdown

2) For fixed cache parameters, analyze the performance of
the given code/sequence

3\ Forfixed-ca ind best/ .

4) For given code/sequence, how does changing your cache
parameters affect performance?

5) Average Memory Access Time (AMAT)

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow

CSE351, Autumn 2016

The Cache

+» What are the important cache parameters?
" Must figure these out from problem description

= Address size, cache size, block size, associativity,
replacement policy

= Solve for TIO breakdown, # of sets, management bits

« What starts in the cache?

=_Notalwaysspecified{best/worstcase}

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow

Code: Arrays

+» Elements stored contiguously in memory
" |deal for spatial locality — if used properly
= Different arrays not necessarily next to each other

+ Remember to account for data size!
" charis 1B, int/floatis 4 B, long/double is 8 B

+» Pay attention to access pattern
" Touch all elements (e.g. shift, sum)
" Touch some elements (e.g. histogram, stride)
" How many times do we touch each element?

CSE351, Autumn 2016

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Code: Linked Lists/Structs

+» Nodes stored separately in memory
= Addresses of nodes may be very different
" Method of linking and ordering of nodes are important

+» Remember to account for size/ordering of struct
elements

+» Pay attention to access pattern
" Generally must start from “head”
"= How many struct elements are touched?

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow

Access Patterns

+» How many hits within a single block once it is loaded
into cache?

+» Will block still be in cache when you revisit its
elements?

+» Are there special/edge cases to consider?

= Usually edge of block boundary or edge of cache size
boundary

WA UNIVERSITY of WASHINGTON

L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example Problem

a) 1 GiB address space, 100 cycles to go to memory. Fill in the
following table:

L1 L2
Cache Size 32 KiB 512 KiB
Block Size 8B 328B
Associativity 4-way Direct-mapped
Hit Time 1 cycle 33 cycles
Miss Rate 10% 2%
Write Policy Write-through Write-through
Replacement Policy LRU n/a
Tag 17 11
Index 10 14
Offset 3 5
AMAT L1 = AMAT L2 =
AMAT 1+0.1*35=45 |33+0.02*100=35

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example Problem

Using only L1S, char A[] is block aligned, and SIZE=2"25:

char *A = (char *) malloc (S1ZE*sizeof(char));
/* number of STRETCHes */
for(1=0; 1<(SIZE/STRETCH); 1++) {
/* go up to STRETCH */
Tfor(J=0; J<STRETCH; j++) sum += A[1*STRETCH+j];
/* down from STRETCH */
for(J=STRETCH-1;j>=0;3J--) prod *= A[1*STRETCH+j];
+

» What does our access pattern of A[] look like?

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example Problem

Using only L1S, char A[] is block aligned, and SIZE=2"25:

char *A = (char *) malloc (S1ZE*sizeof(char));
/* number of STRETCHes */
for(1=0; 1<(SIZE/STRETCH); 1++) {
/* go up to STRETCH */
Tfor(J=0; J<STRETCH; j++) sum += A[1*STRETCH+j];
/* down from STRETCH */
for(J=STRETCH-1;j>=0;jJ--) prod += A[1*STRETCH+j];
+

» What does our access pattern of A[] look like?

" Mostly stride-by-1 with step size sizeof(char) =18B
= 2ndinner For loop hits same indices as 1%t inner For loop, but in reverse
order

= Always traverse full S1ZE, regardless of STRETCH

10

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example Problem

Using only L1S, char A[] is block aligned, and SIZE=2"25:

char *A = (char *) malloc (S1ZE*sizeof(char));
for(i=0; i<(SI1ZE/STRETCH); i++) {
for(J=0;J<STRETCH; j++) sum += A[1*STRETCH+j];
for(j=STRETCH-1;j>=0;j--) prod += A[i*STRETCH+j];
+
As we double our STRETCH from 1 to 2 to 4 (...etc), we notice
the number of cache misses doesn’t change! What is the
largest value of STRETCH before cache misses changes?

2715, when working set size (STRETCH*s1zeof(char))
exactly equals cache size C

11

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Cache Example Problem

Using only L1S, char A[] is block aligned, and S1ZE=2"25.
Cache size C = 32 KiB, block size K = 8 B, associativity N = 4.
char *A = (char *) malloc (S1ZE*sizeof(char));
for(1=0; 1<(SIZE/STRETCH); 1++) {
Tfor(J=0; J<STRETCH; j++) sum += A[1*STRETCH+j];
Tfor(J=STRETCH-1;J>=0;j--) prod += A[1*STRETCH+j];
by

c) If we double our STRETCH from (b), what is the ratio of cache
hits to misses?

12

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Data & addressing

Road map Integers & floats

Machine code & C

C: Java:
x86 assembly

car *¢ = malloc(sizeof(car)); Car ¢ = new Car(); Procedures & stacks
c—>miles = 100; c.setMiles(100); Arrays & structs
c->gals = 17; c.setCals(17); Memory & caches
float mpg = get_mpg(c); float mpg = P /
free(c); c.getMPG(); rOCESSEs

— — Virtual memory
Assembly get_mpg.- Memory allocation
language: pushg %rbp favavs. ¢

mov(q »rSp, »rbp

popq %rbp

ret | OS:

\ 4
Machine 0111010000011000 -- An
code: 100011 01000001 0000000010 \

' 1000100111000010
110000011111101000011111

v

Computer

system:

13

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

14

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Control Flow

+» So far: we’ve seen how the flow of control changes
as a single program executes

+» Reality: multiple programs running concurrently

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

+ Exceptional control flow is basic mechanism used for:
" Transferring control between processes and OS
= Handling I/0 and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

15

W UNIVERSITY of WASHINGTON

Control Flow

L19: Cache Example, System Control Flow CSE351, Autumn 2016

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

" This sequence is the CPU’s control flow (or flow of control)

time

Physical control flow

<startup>
instr,
instr,
instr,

instr
<shutdown>

16

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Altering the Control Flow

+» Up to now: two ways to change control flow:
= Jumps (conditional and unconditional)
= Call and return
= Both react to changes in program state

+ Processor also needs to react to changes in system state
= Unix/Linux user hits “Ctrl-C” at the keyboard
= User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= System timer expires

+ Can jumps and procedure calls achieve this?

"= No —the system needs mechanisms for “exceptional” control flow!

17

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Java Digression #1

+ Java has exceptions, but they’re something different

= Examples: NullPointerException, MyBadThingHappenedException, ...
= throw statements

" try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+ System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

18

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow

Exceptional Control Flow

+ Exists at all levels of a computer system

« Low level mechanisms
= Exceptions

« Change in processor’s control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software
+ Higher level mechanisms

" Process context switch
Implemented by OS software and hardware timer
= Signals

*

Implemented by OS software
- We won’t cover these — see CSE451 and CSE/EE474

CSE351, Autumn 2016

19

WA UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow

CSE351, Autumn 2016

Exceptions

+ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e., change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr ¥, exception

>
next_instr exception processing by
exception handler, then:
* return to current_instr,

* return to next_instr, OR
* abort

R/

+» How does the system know where to jump to in the OS?

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Exception Table

+ A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique
exception number k

= k =index into exception table
(a.k.a interrupt vector)

code for
= Handler k is called each time exception handler 0
exception k occurs Exception o
Table :
exception handler 1
0 ¢ /
1 « code for
2 o« exception handler 2
n-1 o
ExceTtion code for
P exception handler n-1
numbers

21

W UNIVERSITY of WASHINGTON

L19: Cache Example, System Control Flow

Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

CSE351, Autumn 2016

22

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

23

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Asynchronous Exceptions (Interrupts)

+» Caused by events external to the processor

" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

« Examples:

= |/O interrupts
Hitting Ctrl-C on the keyboard
 Clicking a mouse button or tapping a touchscreen

- Arrival of a packet from a network
- Arrival of data from a disk
" Timer interrupt
Every few ms, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

24

W UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Synchronous Exceptions

+» Caused by events that occur as a result of executing an
instruction:
" Traps
- Intentional: transfer control to OS to perform some function
- Examples: system calls, breakpoint traps, special instructions

« Returns control to “next” instruction
=" Faults
- Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts
- Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)

- Aborts current program

25

WA UNIVERSITY of WASHINGTON

System Calls

L19: Cache Example, System Control Flow

+ Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number
0
1
2
3
4

57
59
60
62

Name
read
write
open
close
stat
fork
execve
_exit
kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

CSE351, Autumn 2016

26

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Traps Example: Opening File

User calls open(filename, options)
Calls __open function, which invokes system call instruction syscal |

00000000000e5d70 <__open>:

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2
ebd7e: Of 05 syscall # return value i1In %rax
e5d80: 48 3d 01 fO fFf fFf cmp SOXFFFFFFFFFFFFTO0L, %rax

ebdfa: c3 retq
User code OS5 Kernel code m %rax contains syscall number
m Other arguments in %rdi,
. Exception %rsi, %rdx, %rio, %rs8, %r9
yscallv >

cmp | . m Return value in %rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

v

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Fault Example: Page Fault

int af1000];

User writes to memory location int main ()

{
That portion (page) of user’s memory a[500] = 13:
is currently on disk ks
80483b7: c7 05 10 9d 04 08 0Od movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault handle_page_fault:

movl & >
Create page and
returns load into memory

v

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Fault Example: Invalid Memory Reference

int af1000];
int main()
{
a[5000] = 13;
¥
80483b7: c7 05 60 e3 04 08 Od movl $0xd ,0x804e360
User Process 0OS

l exception: page fault handle_page_fault:

movl

. detect invalid address
signal process

Page fault handler detects invalid address
Sends SIGSEGYV signal to user process

User process exits with “segmentation fault”
29

w UNIVERSITY of WASHINGTON L19: Cache Example, System Control Flow CSE351, Autumn 2016

Summary

+» EXceptions
" Events that require non-standard control flow

" Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

30

