WA/ UNIVERSITY of WASHINGTON L17: Caches |l CSE351, Autumn 2016

Caches I

CSE 351 Autumn 2016

LM SORRY, WE(ANT APPROVE
Instructor: THIS PERMIT: YOUR LAND ISNT

Justin Hsia ZONED FOR GIANT-MONEY-BIN
o CONSTRUCTION.

Teaching Assistants: \ ALSO, YOUKE

Chris Ma A DUCK.

Hunter Zahn)
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat

Thomas Neuman

Waylon Huang
Xi Liu https://what-if.xkcd.com/111/

Yufang Sun

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L17: Caches Ii

Administrivia

+ Lab 3 due Thursday

+» Midterm grades
® Unadjusted average currently right around 65%
- All scores will be adjusted up by 6 points in Catalyst
= Regrade requests open on Gradescope until end of Thursday

- It is possible for your grade to go down

- Make sure you submit separate requests for each portion of a
guestion (e.g. Q5A and Q5B) — these may go to different graders!

59

60 -

50 - CSE351 Aulé6
40 - Midterm

Students
w
o

0 5 10 15 20 25 30 35 40 45 50 55
Unadjusted Score (out of 55)

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
(DRAM) Main memory holds disk blocks
slower,))
retrieved from local disks
cheaper
per byte local secondary storage

Local disks hold files
retrieved from disks on
remote network servers

(local disks)

remote secondary storage
(distributed file systems, web servers)

WA UNIVERSITY of WASHINGTON L17: Caches Ii

Making memory accesses fast!

+ Cache basics
+ Principle of locality
+» Memory hierarchies
» Cache organization
" Direct-mapped (sets; index + tag)
" Associativity (ways)
= Replacement policy
" Handling writes

+» Program optimizations that consider caches

>

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L17: Caches |l CSE351, Autumn 2016

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

« Offset field

" Low-order log,(K) = O bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
= (address) modulo (# of bytes in a block)

A — O bits O bits

A-bit address: Block Number Block Offset
(refers to byte in memory)

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Cache Organization (2)

+» Cache Size (C): amount of data the $ can store
® Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C/K)
= Example: C=32KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

®" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
" Hash table!

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2016

Aside: Hash Tables for Fast Lookup

Insert:
5

27
34
102
119

Apply hash function to map data
to “buckets”

© 0O ~NO O~ WDNPF O

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Place Data in Cache by Hashing Address

Memory Cache
Block Addr Block Data Index Block Data _
oooo | |, |, , >00 L
0001 111 01 111 Here K=4B
oo0 [T T 1 10 T ~and C/K=4
0011 [| ERN _
0100 111
0101 v .
0110 [+/ Map to cache index from block
| | |
gl L. address
1000 [T T .
1001 [1 1 . = Use next log,(C/K) = I bits
1812 ——t = (block address) mod (# blocks in
1100 [T 1 cache)
ﬁié ——t " |ets adjacent blocks fit in cache
111 e simultaneously!

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2016

Place Data in Cache by Hashing Address

Memory Cache
Block Addr Block Data Index Block Data _
0000 | , | | ~00 L
0001 11 01 11 1 | HereK=48B
0010 T 1 | 10 L and C/K=4
o011 [| 1 EO i
0100 I
0101 L ..
——i & |
o110 [«/ Collision!
S L. " This might confuse the cache later
1000 Lo
- when we access the data
1001 '
1010 | I ! | = Solution?
1011 L
1100 I
1101 ;o
1110 L 1
1111 T

10

WA UNIVERSITY of WASHINGTON

L17: Caches Il

CSE351, Autumn 2016

Tags Differentiate Blocks in Same Index

Block Addr Block Data

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

Index
»00

01
10
11

Cache

Tag

Block Data

00

01

01

__HereK=4B
and C/K=4

—

+/ Tag = rest of address bits

" T hits=A—1—-0

® Check this during a cache lookup

11

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Checking for a Requested Address

% CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # his or her phone number

« T10 address breakdown:
A-bit address: Tag (1) Index (I) | Offset (O)

\)
Y
Block Number

" Index field tells you where to look in cache
o field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: | and I sizes will change based on hash function
12

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2016

Cache Puzzle #1

+» What can you infer from the following behavior?
= Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)

« Minimum block size?

« Maximum block size?

13

W UNIVERSITY of WASHINGTON

L17: Caches Il

Direct-Mapped Cache

Block Addr Block Data

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

Memory

00
01
10
11
00|
01
10
11
00
01
10
11
00
01
10
11

Index

»00
01
10
11

Cache
Tag

Block Data

00

11

01

01

CSE351, Autumn 2016

| Here K=4B
and C/K=4

—

+«/ Hash function: (block address)
mod (# of blocks in cache)

" Each memory address maps to
exactly one index in the cache

" Fast (and simpler) to find an
address

14

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Direct-Mapped Cache Problem

Memory Cache
Block Addr Block Data Index Tag Block Data
oolod [| | | 00 |22 T
00|01 o1 01 |77 o1 Here K=4B
oo10 | ' ! | 10 T —and C/K=4
ool [+ 1 | 1|22 .
orfod [1 1
oo + What h f th
o1l10 T R dl Nappens It we aCcess tne
orjagy f v 1 following addresses?
ol00 | |, . |
10/01. T m 8,24,8, 24,8, ..7
o) o " Conflict in cache (misses!)
o011 | 7 |
12/000 [1 1 i = Rest of cache goes unused
11|01 L _
11010 [1 + Solution?
12022 [0 1

15

L17: Caches Il CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON

Associativity

+» What if we could store data in any place in the cache?

" More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

" Each set can store block in more than one way

1-way: 2-way: 4-way: 8-way:
8 sets, 4 sets, 2 sets, 1 set,
1 block each 2 blocks each 4 blocks each 8 blocks

direct mapped

fully associative16

0 Set Set Set
: < I | ..
2 O ..
3 1 ..
[P ———
4 w2 IS [N [(N S
o (i P R
6 3 b I ..
7

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

Cache Organization (3)

+ Associativity (N): # of ways for each set
= Such a cache is called an “N-way set associative cache”
= We now index into cache sets, of which there are C/K/N

" Use lowest log, (C/K/N) =1 bits of block address

- Direct-mapped: N=1,sol=1og,(C/K) as we saw previously
- Fully associative: N = C/K, so I =0 bits

Used for tag comparison Selects the set Selects the byte from block
I I I
Tag (1) Index (I) Offset (O)

. L — Increasing associativity
Decreasing associativity «+—

. | Fully associative
Direct mapped %7 | (only one set)
(only one way)

17

W UNIVERSITY of WASHINGTON

L17: Caches Il

Example Placement

CSE351, Autumn 2016

block size:
capacity:
address:

16 B
8 blocks
16 bits

<+ Where would data from address Ox1833 be placed?

= Binary: Ob 0001 1000 0011 0011

A-bit address:

Direct-mapped

Set Tag

=?

Data

0

Nou bk~ whNBE

=A-I-0 I=log,(C/K/N) 0O =log,(K)
Tag (1) Index (I) Offset (O)
I=>? =7
2-way set associative 4-way set associative
Set Tag Data Set Tag Data
0
0
1
2
1
3

18

WA UNIVERSITY of WASHINGTON

L17: Caches Il

Example Placement

CSE351, Autumn 2016

block size:
capacity:
address:

16 B
8 blocks
16 bits

<+ Where would data from address Ox1833 be placed?

= Binary: Ob 0001 1000 0011 0011

A-bit address:

Direct-mapped

Set Tag

=3

Data

0

Nou bk~ whNBE

=A-I-0 I=log,(C/K/N) 0O =log,(K)
Tag (1) Index (I) Offset (O)
I=2 I=1
2-way set associative 4-way set associative
Set Tag Data Set Tag Data
0
0
1
2
1
3

19

WA UNIVERSITY of WASHINGTON

If there are no empty blocks, which one should we replace?
" No choice for direct-mapped caches

0

Nou bk~ whNBE

Direct-mapped
Set Tag

Block Replacement

+» Any empty block in the correct set may be used to store block

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

0

1

L17: Caches Il CSE351, Autumn 2016

2-way set associative
Set Tag

4-way set associative
Set Tag

WA UNIVERSITY of WASHINGTON L17: Caches |l CSE351, Autumn 2016

Cache Puzzle #2

+» What can you infer from the following behavior?
= Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (10: miss), (12: miss), (10: miss)

+ Associativity?

«+ Number of sets?

21

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2016

General Cache Organization (S, N, K)

N = blocks/lines per set
A

r ~N
r —
0 090
(block plus
eo0e management bits)
S = # sets < cooe
=2l
0 0000000000 0OCOCOCEOGONOGOEOSEOSGONOGOEOSOEOEEOSOSOSOOO
0 00
\.
Cache size:
C =S X N X K data bytes
Lv_| tag olz]2] - B-1 (doesn’t include V or Tag)
/7 — _/
valid bit Y

K = bytes per block -

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2016

Notation Changes

+» We are using different variable names from previous
quarters

= Please be aware of this when you look at past exam
guestions or are watching videos

Block size K B
Cache size C =
Associativity N E
Address width A m
Tag field width t
Index field width | k, s
Offset field width 0 n, b

Number of Sets S S
23

