Caches II

CSE 351 Autumn 2016

Instructor:

Justin Hsia

Teaching Assistants:

Chris Ma

Hunter Zahn

John Kaltenbach

Kevin Bi

Sachin Mehta

Suraj Bhat

Thomas Neuman

Waylon Huang

Xi Liu

Yufang Sun

https://what-if.xkcd.com/111/

Administrivia

Lab 3 due Thursday

Midterm grades

- Unadjusted average currently right around 65%
 - All scores will be adjusted up by 6 points in Catalyst
- Regrade requests open on <u>Gradescope</u> until end of Thursday
 - It is possible for your grade to go down
 - Make sure you submit separate requests for each portion of a question (e.g. Q5A and Q5B) – these may go to different graders!

CSE351, Autumn 2016

An Example Memory Hierarchy

Making memory accesses fast!

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets; index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Cache Organization (1)

- Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g. 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!

Cache Organization (1)

- Block Size (K): unit of transfer between \$ and Mem
 - Given in bytes and always a power of 2 (e.g. 64 B)
 - Blocks consist of adjacent bytes (differ in address by 1)
 - Spatial locality!
- Offset field
 - Low-order $log_2(K) = 0$ bits of address tell you which byte within a block
 - (address) mod $2^n = n$ lowest bits of address
 - (address) modulo (# of bytes in a block)

_	A - 0 bits	0 bits
A -bit address:	Block Number	Block Offset
refers to byte in memory	()	-

Cache Organization (2)

- Cache Size (C): amount of data the \$ can store
 - Cache can only hold so much data (subset of next level)
 - Given in bytes (C) or number of blocks (C/K)
 - Example: C = 32 KiB = 512 blocks if using 64-B blocks
- Where should data go in the cache?
 - We need a mapping from memory addresses to specific locations in the cache to make checking the cache for an address fast
- What is a data structure that provides fast lookup?
 - Hash table!

Aside: Hash Tables for Fast Lookup

Insert:

5

27

34

102

119

Apply hash function to map data to "buckets"

0	
1	
2	
2 3	
4	
5 6	
6	
7	
8	
9	

Place Data in Cache by Hashing Address

Place Data in Cache by Hashing Address

Tags Differentiate Blocks in Same Index

Checking for a Requested Address

- CPU sends address request for chunk of data
 - Address and requested data are not the same thing!
 - Analogy: your friend ≠ his or her phone number
- TIO address breakdown:

- Index field tells you where to look in cache
- Tag field lets you check that data is the block you want
- Offset field selects specified start byte within block
- Note: T and I sizes will change based on hash function

CSE351, Autumn 2016

Cache Puzzle #1

- What can you infer from the following behavior?
 - Cache starts empty, also known as a cold cache
 - Access (addr: hit/miss) stream:
 - (14: miss), (15: hit), (16: miss)

Minimum block size?

Maximum block size?

Direct-Mapped Cache

Direct-Mapped Cache Problem

Associativity

- What if we could store data in any place in the cache?
 - More complicated hardware = more power consumed, slower
- So we combine the two ideas:
 - Each address maps to exactly one set
 - Each set can store block in more than one way

Cache Organization (3)

- Associativity (N): # of ways for each set
 - Such a cache is called an "N-way set associative cache"
 - We now index into cache sets, of which there are C/K/N
 - Use lowest $log_2(C/K/N) = I$ bits of block address
 - <u>Direct-mapped</u>: N = 1, so $I = log_2(C/K)$ as we saw previously
 - Fully associative: N = C/K, so I = 0 bits

Example Placement

block size: 16 B
capacity: 8 blocks
address: 16 bits

- * Where would data from address 0×1833 be placed?
 - Binary: 0b 0001 1000 0011 0011

T = A-I-O I = $log_2(C/K/N)$ O = $log_2(K)$ A-bit address: Tag (T) Index (I) Offset (O)

I = ?Direct-mapped

Set	Tag	Data
0		
1		
2		
3		
4		
1 2 3 4 5 6		
6		
7		

I = ?2-way set associative

Set	Tag	Data
0		
1		
2		
3		

I = ?4-way set associative

Set	Tag	Data
0		
J		
1		
_		

CSE351, Autumn 2016

Example Placement

block size: 16 B capacity: 8 blocks

address: 16 bits

- * Where would data from address 0×1833 be placed?
 - Binary: 0b 0001 1000 0011 0011

T = A-I-O I = $log_2(C/K/N)$ O = $log_2(K)$ A-bit address: Tag (T) Index (I) Offset (O)

I = 3Direct-mapped

Set	Tag	Data
0		
1		
2		
3		
4		
2 3 4 5 6		
6		
7		

I = 22-way set associative

Set	Tag	Data
0		
1		
2		
3		

I = 14-way set associative

Set	Tag	Data
0		
ļ		
1		

Block Replacement

- Any empty block in the correct set may be used to store block
- If there are no empty blocks, which one should we replace?
 - No choice for direct-mapped caches
 - Caches typically use something close to least recently used (LRU)
 (hardware usually implements "not most recently used")

Direct-mapped

Set	Tag	Data
0		
1		
2		
3		
4		
2 3 4 5 6		
6		
7		

2-way set associative

Set	Tag	Data
0		
1		
2		
3		

4-way set associative

Set	Tag	Data
0		
1		

Cache Puzzle #2

- What can you infer from the following behavior?
 - Cache starts empty, also known as a cold cache
 - Access (addr: hit/miss) stream:
 - (10: miss), (12: miss), (10: miss)

Associativity?

Number of sets?

General Cache Organization (S, N, K)

Notation Changes

- We are using different variable names from previous quarters
 - Please be aware of this when you look at past exam questions or are watching videos

Variable	This Quarter	Previous Quarters
Block size	K	В
Cache size	С	
Associativity	N	E
Address width	A	m
Tag field width	T	t
Index field width	I	k, s
Offset field width	0	n, b
Number of Sets	S	S