WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Caches |
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman

Waylon Huang
Xi Liu
Yufang Sun

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Administrivia

+» Homework 2 due today at 5pm
+» Lab 3 due next Thursday

+» Midterm will be graded over the weekend
= Posted solutions not set in stone

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

C. Java:
car *¢ = malloc(sizeof(car)); Car ¢ = new Car();
c—>miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);

Memor h
float mpg = get_mpg(c); float mpg = emory & caches
free(c); c.getMPG();

\ /

Assembly get_mpg:

language: suElng Ao
mov(q »rSp, %rbp

popg %rbp

Lt I OS:
\ 4
Machine 0111010000011000 -- /[
code: 10001101000001 000000010
1000100111000010
110000011111101000011111
i
Computer

system:

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

How does execution time grow with SIZE?

!nt array[SI1ZE];
iInNt sum = 0O;

for (int 1 = 0; i < 200000; i++) {
for (int j = 0; j < SIZE; j++) {

r@ogda sum += array[j];(——execurfe STZE *200000 times
9)('«4\"5 }
} Time |
I
e'KP"C'
Plot | e

S1ZE

WA/ UNIVERSITY of WASHINGTON

Actual Data

L16: Caches |

CSE351, Autumn 2016

45

40

35

30

25

Time

20

15

6000

8000

10000

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Making memory accesses fast!

+ Cache basics

+ Principle of locality
<~ Memory hierarchies
+» Cache organization

+» Program optimizations that consider caches

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Processor-Memory Gap

1989 first Intel CPU with cache on chip

1998 Pentium lll has two cache levels on chip >
10000 | 55%/year
(2X/1.5yr)
g 1000 A
= Processor-Memory
T Performance Gap
0,
..g “Moore’s Law” (grows 50%/year)
Q10
; DRAM
1 B \ I \ \ I \ I \ \ I \ I \ \ I \ I \ I I \ I \ | 7%/year

& | (2X/10yrs)
W

N
S
P

Q > © %) 1) Ne)
NS Ne) NS o) %) %) %)
N N N N N N N

Year

YA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Problem: Processor-Memory Bottleneck

Processor performance

doubled about _
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency
100-200 cycles (30-60ns)

cycle: single machine step (fixed-time) 8

YA UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Autumn 2016

Problem: Processor-Memory Bottleneck

Processor performance

doubled about
every 18 months

CPU | Reg

Cache

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Cache &

+ Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

" More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, I/O cache, etc.)

10

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

General Cache Mechanics

* Smaller, faster, more expensive
memory.

* Caches a subset of the blocks
(a.k.a. lines)

Cache 7 9 14 3

Asin
b , 3|< Data is copied in!blocklsized
ocC

transfer units
hum EerS

* Larger, slower, cheaper memory.

Memory 0 1 2 3 * Viewed as partitioned into “blocks”
4 5 6 7 or “lines”
8 9 10 11
12 13 14 15

11

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach - 3 2 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 00000000 000O0CGOCGOGOG OO

12

WA/ UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Autumn 2016

General Cache Concepts: Miss

® 0)
Request: 12
Cache 7 12 14 3
(3)]ji}) Request: 12
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
O 000000000000 OCGOGOOGOS

G)Data in block b is needed

Block b is not in cache:
Miss!

@ Block b is fetched from
memory

(® Block b is stored in cache
* Placement policy:
determines where b goes
* Replacement policy:
determines which block
gets evicted (victim)

) Datq returned o CP

13

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Why Caches Work

+» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

14

L16: Caches |

W UNIVERSITY of WASHINGTON

Why Caches Work

CSE351, Autumn 2016

+» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

\/

block

15

L16: Caches |

W UNIVERSITY of WASHINGTON

Why Caches Work

CSE351, Autumn 2016

Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

*

recently

\/

Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future (—7

Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time

*

How do caches take advantage of this?

block

block

16

W UNIVERSITY of WASHINGTON

L16: Caches | CSE351, Autumn 2016

Example: Any Locality?

Loer A S+VV\C* ‘OV\S :

sum = O; o

for (i = 0; i < n; i++) G

{) 00
sum += a[i]; a G

1 aC() G®

return sum; « (1) G0 je

<« Data:
= Temporal:

= Spatial:

<+ Instructions:

" Temporal:

= Spatial:

sum referenced in each iteration
array a| | accessed in stride-1 pattern

cycle through loop repeatedly
reference instructions in sequence

17

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Locality Example #1

Int sum_array_rows(int a[M][N])
{ Yo~ coly
int 1, jJ, sum = 0;

for (1 = 0; 1 < M; 1++)
for (J = 0; J < Nj; jJ++)
sum += ali][J1;

return sum;

18

WA/ UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #1

CSE351, Autumn 2016

INt sum_array_rows{(int a[M][N]D)
{
int 1, jJ, sum = 0;
for (1 = 0; 1 < M; 1++)
for g =05 J < N; j++)
sum += afi]l1l;
0,0
return sum; 0, |
+
Layout in Memory
é. a | a a a a a a a a a
[O1|[O1|[O| o111 (1] ([1]|[11|[2]1|[2]([2]1|[2]
[O1|[11|[21|[31|[01|[1]1|[21|[31][01|[1]|[2]|[3]
“W “_,_\M/—-—/ 1t —
76 ™° 92 7 108 Yo

—

Note: 76 is just one possible starting address of array a

M=3,N=4

a[0][0] || alO][1] | |alOll2] | | a[OI[3]
a[1]io]||al1lil||ar1l2]||ar1l3l
a[2][o0]||al2][1] ||al2]l2] | | al2][3]

Access Pattern: 1)| a[0][O]

stride=" 2)| a[0][1]

At 3| afo1r2l

18 4 a[o]rs]

5)| a[1]110]

AT « 6)f a[1][1]

de-1) af1]r2)

8)| al1]1l3]

9)| al2]10]

10)| a[2]1[1]

11)| a[2]1[2]

12)| a[2]1[3]

19

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Locality Example #2

Int sum_array_cols(int a[M][N])
int 1, jJ, sum = 0;
for (J = 0; J < N; J++)
for (i = 0; 1 < Mj; 1++)
sum += a[i]1[i];

return sum;

20

WA/ UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #2

Int sum_array_cols(int a[M][N])
{
int 1, jJ, sum = 0;
for J = 05 J < N; j++)
for (1 = 0; 1 < M; 1++)
sum += afi]l1l;
0,0
return sum; \, 0
+

Layaﬁé%;;;xgory ‘\\\\\\

CSE351, Autumn 2016

allalalal@|alalalaNalala
|LO1| [O1|[O1[O] (11\r21|r11|r21{c21/c21| 21| 121
oyfil|21| 1oy 112131 .9 [11|121|[3]
| | |
76 92 108

M=3,N=4

a[0][0] || alO][1] | |alOll2] | | a[OI[3]
a[1]io]||al1lil||ar1l2]||ar1l3l
a[2][o0]||al2][1] ||al2]l2] | | al2][3]

Access Pattern: 1)| a[0][O]

stride="7 2)| a[1][0]

Qb 3D ar21[o]

lcg [0l

5)| al1]l1]

Aiae-y a1l

N » 1) al0][2]

stide-N" gy M2

9)| al2]112]

10)| a[0][3]

11)| a[1][3]

12)| a[2][3]

21

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L16: Caches |

Locality Example #3

Int sum_array 3D(int a[M][N]J[LD)
{
int 1, §J, k, sum = 0O;
for (1 = 0; 1 < Nj; 1++)
for g =05 J < L; j++)
for (k = 0; k < M; k++)
sum += a[k]L[1ll1];
return sum;
+

+» What is wrong
with this codg?

“etde - NV L

« How can it be
fixed?

>
(TEaropollazyor lazuozl aziona;

(\ 11[0] [O] Ha[1][0][11Ha[1][0][2]1Ha[1][0][3]

z1x][3]

aloj[olo1Halo (011 11AE0I01[21[0][0)(3]

A LJ] L lUJI_IalJ-JlJ-]][3]

%ﬁOHHKH%ﬂoﬂlﬂﬂ a[0][1][2]{al0][1][3]

?
i

103]

2 A LJ<NVIN[A] L] &

zz][3]| €—m = 2

«<—m=1

a[0](2](0][[a[0][2][1][]al0][2](2][|a[0](2](3]F—m = 0

22

W UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #3

Int sum_array 3D(int a[M][N][LD)

CSE351, Autumn 2016

+» What is wrong

{
int i, j, k, sum = 0; with this code?
for (1 = 0; 1 < Nj; 1++)
for = 0; J <L; j++)
for (k = 0; k < M; k#+) | « How can it be
sum += a[K1[i1Lil: :
fixed? L
return sum; hnev leop: K= SJ““\’M’
} | = §"’Y‘|A¢‘L
| 3= chride-1]
Layout in Memory (M =?,N=3,L=4)
a a
(01| 107 { 101 {101 | 01 | 01 | t01 | t01 | t01 | t03 | t07 | r01 | 23 |21 | eaa | ey | cp | cap | ey | v o o e o),
1| (01| 101|101 21| 11| (21 | a1 | (21| 21 | 21| 121 | 101 | 101 | f01 | (o1 | (21 | c21 {121 | 121 | £21 | 121 | (21 | 2
1| 121{121| 31| (01| (11| (21 | 31 | 101 | 21 | 121 | 131 | 101 | 121 | (21 | 31 | 101 | 121 | 121 | 31 | 101 | 121 | (21 | 63
76 92 108 124 140 156 172

23

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

é(’fﬁ Wy — S

Cache Performance Metrics @$>MP ~ § miss

Mern

+» Huge difference between a cache hit and a cache miss

= Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

» Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

% Hit Time (HT)

" Time to deliver a block in the cache to the processor

- Includes time to determine whether the block is in the cache

% Miss Penalty (MP)

= Additional time required because of a miss

24

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Cache Performance

+» Two things hurt the performance of a cache:

" Miss rate and miss penalty

+» Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate twice as good as 97% hit rate!

= Assume HT of 1 clock cycle and MP of 100 clock cycles

" 97%: AMAT = | + Cl=o.qd)» 100 = 143= L clk opcley
m 99%. AMAT: |f"' ((—0,‘17)\<L00 e (-H‘:-Z c'o(k c\/clfs

25

WA/ UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Peer Instruction Question

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT: I—l— 60(0'0]’) = l-l'l = 2 clocl cg/g(.e)

G

+» Which improvement would be best?
= 190 ps clock <°"“"'°(°¢'°%)
336,)
= MP of 40 clock cycles Chinging mmen = Smaller)
[o (00) = |8 e = [73>Cc3 rsj
= MR of 0.015 misses/instruction (betler loccldy, i cote)
| _|,5‘1)Co.o\s): \.+5 « ;(’sgoﬂl

26

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:

" Miss Rate

- L1 MR =3-10%

- L2 MR = Quite small (e.g., < 1%), depending on parameters, etc.
" Hit Time

« L1 HT =4 clock cycles

« L2 HT =10 clock cycles
= Miss Penalty

+ P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

27

WA UNIVERSITY of WASHINGTON L16: Caches |

CSE351, Autumn 2016

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers €<= cache, cache <> DRAM, DRAM <& disk, etc.

= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

28

W UNIVERSITY of WASHINGTON L16: Caches |

An Example Memory Hierarchy

4 >~
registers p—

CSE351, Autumn 2016

31 days

66 months = 1.3 years

1ns on-chip L1

Smaller, cache (SRAM)
faster,
costlier .
"e’r—g—te 5-10 ns Off'Chlp L2
per by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper 154 000 s —
per byte local secondary storage

10,000,000 ns Disk (local disks)

(10 ms)
1-150 ms remote secondary storage
(distributed file systems, web servers)

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
byt off-chip L2
er e
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
(DRAM) Main memory holds disk blocks
slower,))
retrieved from local disks
cheaper
per byte local secondary storage

Local disks hold files
retrieved from disks on
remote network servers

(local disks)

remote secondary storage
(distributed file systems, web servers)

30

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

An Example Memory Hierarchy

A
explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
Smaller, BRI program sees “memory”;
faster, .
: hardware manages caching
costlier off-chip L2 |
] transparent
per byte cache (SRAM) P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage

(local disks)

remote secondary storage
(distributed file systems, web servers)

31

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L16: Caches |

Memory Hierarchies

+» Fundamental idea of a memory hierarchy:
" For each level k, the faster, smaller device at level k serves
as a cache for the larger, slower device at level k+1
+» Why do memory hierarchies work?

= Because of locality, programs tend to access the data at level
k more often than they access the data at level k+1

" Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit
+» Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top

4

32

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Intel Core i7 Cache Hierarchy

Processor package

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

. Core0 Core 3 . Block size:

| " 64 bytes for all caches.
Regs Regs !

' L1 i-cache and d-cache:
| L1 L1 L1 L1 i 32 KB, 8-way,

. | |d-cache| |i-cache d-cache| |i-cache Access: 4 cycles

L2 unified cache:

L2 unified cache L2 unified cache | 256 KB, 8-way,
Access: 11 cycles

Main memory

33

W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Autumn 2016

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
" |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

34

