W UNIVERSITY of WASHINGTON

L15: Structs and Alignment

Structs and Alighment
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:

CSE351, Autumn 2016

Chris Ma Hunter Zahn John Kaltenbach Kevin Bi
Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang
Xi Liu Yufang Sun
SO WHAT DID YOU — TAKING ON TEEN VANDALS T <€E. | | MY PUMPKIN'S NAME 1S HAROLD. HE | [T CARVED AND CARVED,
o/ HEWENS, NO. 1Y FUMPKIN JUST REALZED THAT ALLTHE TIME. | | AND THE NEXT THING T
i C oo e et e, | | HE USEDTOSPEND DAYDREAMING | | KNEW T HAD 74 PUMPKING,
IN FACT, T(L LEAVE HE NOW SPENDS WORRYING. S~
A NOTE. ARG HELL TRY TO DISTRACT HISELFLATER | |\ 0 e
THEM Nor TO WITH HOUDAY THE FUOM,
OF CHOICE.

http://xkcd.com/804/

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Administrivia

+» Homework 2 due Friday
+» Lab 3 released today

» Midterm next lecture

" Try to come early to settle in; starting promptly
" Make a cheat sheet! — two-sided letter page, handwritten
" Midterm details Piazza post: @225

» Review session tonight from 5-7pm in EEB 105

» Extra office hours
= Justin Tue 11/1, 12:30-4:30pm, CSE 438

W UNIVERSITY of WASHINGTON

Roadmap

C:

L15: Structs and Alignment

Java:

car *C = mal
c->miles = 1

c->gals = 17;

loc(sizeof(car));
00;

Car ¢ = new Car();
c.setMiles(100);
c.setGals(17);

CSE351, Autumn 2016

Arrays & structs

float mpg = get_mpg(c); float mpg =
free(c); c.getMPG();
Assembly get_mpg:
language: suElng Ao
mov(q »rSp, %rbp
popg %rbp
ret + OS:
Machine 0111010000011000 --
code: 100011 01000001 00VYYYV1 0
’ 1000100111000010 .
110000011111101000011111
Computer

system:

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Data Structures in Assembly

« Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

< Structs

= Alignment

< Unions

W UNIVERSITY of WASHINGTON

Structs in C

L15: Structs and Alignment

+» Way of defining compound data types
+ A structured group of variables, possibly including other structs

typedef struct {
int lengthlnSeconds;
Int yearRecorded;

+ Song;
Song songl;

songl. lengthlnSeconds
songl.yearRecorded

Song song2;

song2. lengthlnSeconds
song2.yearRecorded

= 213;
= 1994;

= 248;
= 1988;

CSE351, Autumn 2016

typedef struct {

int lengthInSeconds;
int yvearRecorded;

} Song;

rsungl

lengthInSeconds: 213
vearRecorded: 1994

rsungE

lengthInSeconds: 248
yvearRecorded: 1988

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment

CSE351, Autumn 2016

Struct Definitions

« Structure definition:

= Does NOT declare a variable

struct name {
/* Tields */

®" Variable type is “struct name” b
- pointer —— Easy to forget
struct name namel, *pn, name ar[3]: semicolon!
‘1\
array

% Joint struct definition and typedef

" Don’t need to give struct a name in this case

struct nm {
/* Tfields */
}s
typedef struct nm name;
name nl;

—

typedef struct {
/* fields */

} name;

name nl;

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |<«<— Size= bytes | struct rec {
int ar[4]; int aj4];
long d; long 1;
}; struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

L15: Structs and Alignment CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON

Accessing Structure Members

+ @Given a struct instance, dCcessS
struct rec {

member using the . operator: int a[4]
I ;
struct rec ril; long i;

ri.i = val; struct rec *next;
+» @Given a pointer to a struct:

struct rec *r;
r = &rl; // or malloc space for r to point to

We have two options:
- Use * and . operators: (*r).1 = val;

- Use -> operator for short: r->1 = val;

+» In assembly: pointer holds address of the first byte

= Access members with offsets

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Review: StructsinlLab 0

// Use typedef to create a type: Fourlnts
typedef struct {

int a, b, c, d;
} Fourlnts; // Name of type i1s “Fourlnts”

int main(int argc, char* argv|[]) {
Fourlnts f1; // Allocates memory to hold a Fourlnts
// (16 bytes) on stack (local variable)
fl.a = O; // Assign Tirst field 1n f1 to be zero

Fourlnts* t2; // Declare f2 as a pointer to Fourlnts

// Allocate space for a Fourlnts on the heap,

// T2 1s a “pointer to”/”’address of”’ this space.
T2 = (Fourlnts*) malloc(sizeof(Fourints));

f2->b = 17; // Assign the second field to be 17

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment

class Record { ... }

Java SidE'nOte Record X = new Record();

% An instance of a class is like a pointer to a struct

containing the fields
" (Ignoring methods and subclassing for now)
" SoJava’s X.T islike C's X->F or (*x).T

% In Java, almost everything is a pointer (“reference”) to

an object
" Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to
lots of data)

10

W UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Structure Representation

struct rec { r

int aj4];

long 1;

struct rec *next; a i next
LS 0 16 24 32

+» Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
®" Members may be of different types

11

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Structure Representation

struct rec { r

int aj4];

long 1;

struct rec *next; a i next
LS 0 16 24 32

% Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

12

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Accessing a Structure Member

struct rec { r r->1i
int aj4];
long 1;
struct rec *next; a i next
Y 0 16 24 32
+» Compiler knows the long get_i(struct rec *r)
{
offset of each member return r->i;
within a struct ¥
" Compute as
*(r+offset) # r in %rdi, index in %rsi
- Referring to absolute movq 16Ckrdi), %rax
T
offset, so no pointer re

arithmetic

13

WA UNIVERSITY of WASHINGTON L15: Structs and Alignment

CSE351, Autumn 2016

Exercise: Pointer to Structure Member

return &(r->next);

}

struct rec { r
int aj4];
long 1;
struct rec *next; a i next
I
LS 0 16 24 32
long* addr_of i(struct rec *r) # r 1n %rdi
{ 0
return &(r->i); — , orax
3} ret
struct rec* addr_of next(struct rec *r) # r 1n %rdi
{ ,rax

ret

14

WA UNIVERSITY of WASHINGTON L15: Structs and Alignment

Generating Pointer to Array Element

struct rec {
int af[4];
long 1;
struct rec *next;

L

+» @Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

r r+4*>i1ndex
a 1 next
0 16 24 32

CSE351, Autumn 2016

int* find _addr_of _array elem
(struct rec *r, long Index)

{

return &r->afindex];

¥ N\

&(r—>§tindex])

r 1n %rdi, tndex 1n %rsi
leaqg (%rdi,%rsi,4), %rax
ret

15

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Review: Memory Alighment in x86-64

+» For good memory system performance, Intel
recommends data be aligned

"= However the x86-64 hardware will work correctly regardless
of alignment of data

+» Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

I S I S

char No restrictions
2 short Lowest bit must be zero: ...0,
4 1nt, float Lowest 2 bits zero: ...00,

8 [long, double, * Lowest 3 bits zero: ...000,

16 long double Lowest 4 bits zero: ...0000, iy

W UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

" Memory accessed by (aligned) chunks of 4 or 8 bytes
(system dependent)
- Inefficient to load or store value that spans quad word boundaries
 Virtual memory trickier when value spans 2 pages (more on this later)

17

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Structures & Alignment

» Unaligned Data LA IE S e
char c;

C 1[0] 1[1] \Y int i1[2];

p p+l p+5 p+9 p+17 1 Sglfble Vs

+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

c i[0] i[1] v

p+0 P4 p+8 p+16 p+24
A 4\ A A
Multiple ofq Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

18

W UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Satisfying Alignment with Structures (1)

+ Within structure: struct S1 {
_ L _ char c;
= Must satisfy each element’s alignment requirement int i[2]:
+ QOverall structure placement \ SOUNG V;
= Each structure has alignment requirement Ky, i

« Kax = Largest alighment of any element
- Counts array elements individually as elements

= Address of structure & structure length must be multiples of K.«
+» Example:
" Knax =8, due to double element

C 1[0] 1[1] Vv
p+0 P4 p+8 p+16 p+24

a {k S a

Multiple on Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

19

L15: Structs and Alignment CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON

Satisfying Alignment with Structures (2)

«» Can find offset of individual fields StSUCEISZ {
. oupie Vv,
using offsetof() int i[2]-
= Needto#iInclude <stddef.h> char c;
= Example: offsetof(struct S2,c)returns16 |+ “P:
+ For largest alighment requirement K,,,«,
overall structure size must be multiple of K4«
= Compiler will add padding at end of
structure to meet overall structure
alignment requirement
v i[0] i[1] |c
p+0 p+8 p+16 p+24

external fragmentation Multiple of 8 .

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- OoffsetofT can be used to get actual field offset

" QOverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)
- s1zeoT should be used to get true size of structs

21

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Arrays of Structures

. struct S2 {
» Overall structure length multiple of K,,, ;. double v-
» Satisfy alignment requirement it 1[2]:
. char c;
for every element in array } a[10];
a[0] a[1] al2] © -
a+0 a+24 a+48 at+’72

v 1[0] 1[1] |c

a+24 a+32 a+40 /‘ a+48

external fragmentation

22

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Accessing Array Elements

+ Compute start of array element as: 12*index |Struct S3 {
. i _ , . . , short 1;
si1zeof(S3) = 12, including alignment padding float v:
+ Element J is at offset 8 within structure short j;
. + a[10];
+» Assembler gives offset a+8
~To7 — e i
a+0 atl2 atl2*1ndex
I \Y,]
a+l12*index 1
at12*1ndex+8
short get j(int 1ndex) # %rdr = 1ndex
{ leaqg (%rdi,%rdi,2),%rax # 3*i1index
return afindex].j; movzwl a+8(,%rax,4) ,%eax
}

23

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int 1;
int i; ‘ char c;
char d; char d;
+ *p; + *p;
C i d i c|d

12 bytes 8 bytes

24

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Peer Instruction Question

+» Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int 1, int i;
short s[3]; l ;
char *c; ;
float T, ;
& }:

«+ What are the old and new sizes of the struct?

sizeof(struct old) = sizeof(struct new) =

25

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Unions

+» Only allocates enough space for the largest element
In union

+» Can only use one member at a time

struct S { union U { C
char c; char c; . .
int 1[2]; int i[2]; S 1[0] 1[1]
double v; double v; YV}
} 7sp; F *up; up+0 up+4 up+8
C 1[O] 1[1] V

sp+0 sp+4 sp+8 sp+16 sp+24

26

CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON L15: Structs and Alignment

What Are Unions Good For?

+» Unions allow the same region of memory to be referenced as

different types

= Different “views” of the same memory location

= Can be used to circumvent C’s type system (bad idea and technically not
guaranteed to work)

+ Better idea: use a struct inside a union to access some memory
location either as a whole or by its parts

= But watch out for endianness at a small scale...

+» Layout details are implementation/machine-specific...

union Int_or _bytes {
int 1;
struct bytes {
char b0, bl, b2, Db3;

}

WA/ UNIVERSITY of WASHINGTON

L15: Structs and Alignment

CSE351, Autumn 2016

Example: Simulated Condition Flags

+» Simulating an x86-64 processor in C

= Each flag only requires 1 bit, no need to use more space
= Set after most instructions (e.g. arithmetic, test, cmp)

typedef union {
char all;
struct {
unsigned
unsigned
unsigned
unsigned
unsigned
} flags;
} FLAGS;
FLAGS cond_reg;

char unused

char CF : 1;

char ZF : 1
char SF - 1
char OF - 1

- 4,

\> specified

/ bit widths

[cF

Carry Flag ZF| zero Flag

SF

Sign Flag

OF

Overflow Flag]

28

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Example: Simulated Condition Flags

+» Simulating an x86-64 processor in C

= Each flag only requires 1 bit, no need to use more space
= Set after most instructions (e.g. arithmetic, test, cmp)

void set flags(long a, long b, long r) {
// condition for CF i1s complicated
// without access to ALU,
// so omitted from this demo.
cond reg.flags.ZF 'r;
cond reg.flags.SF (r<0);
cond_reg.flags.OF (a>0 && b>0 && r<0)
|l (a<0 && b<0 && r>0);

[CF Carry Flag ZF| zero Flag SF Sign Flag OF Overflow Flag]

29

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement
«» Structures

= Allocate bytes in order declared
" Pad in middle and at end to satisfy alignment

<« Unions

" Provide different views of the same memory location

30

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

BONUS SLIDES

Overview of a basic linked list. You may have
encountered this during Lab 2.

+» Compiler Explorer link: https://godbolt.org/g/Sbsd1r

+ Linked lists are a common example of structs and
pointers (both in C and assembly)

+» You won’t be tested on assembly directives

31

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Linked List Example

+» Generate a (singly-) linked list of values:

typedef struct N {
long val;
struct N *next;
} Node: val next
typedef Node * List LL LL+8 LL+16
// “head” of linked list
List LL = NULL;

% Creating and destroying Nodes:

// dynamically allocate - don’t know how many
Node *newNode = (Node *)malloc(sizeof(Node));

// get rid of Node by freeing 1t (ptr still exists)
free(newNode) ;
newNode = NULL; // optional

32

YA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Example Use of Linked List

int 1;

st LIE = NUEE:

LL = addNode(LL,1); // add node at start of list
LL = addNode(LL,5);

LL = addNode(LL,3);

for(i=-1;i1<4;1++)
printf("'node %d = %ld\n",1,getNode(LL,1));

unix> ./Zlinkedlist
node -1
node O

node 1
node 2
node 3

33

WA UNIVERSITY of WASHINGTON L15: Structs and Alignment

Add a Node at Head of List

CSE351, Autumn 2016

+ Returns new head of list (the added node)

List addNode(List list, long v)
{
Node *node = (Node *)
malloc(sizeof(Node));
node->val = v;
node->next = list;
return node;

addNode (N*,

v

= | et’s examine how this works
for the 3™ call:
LL = addNode(LL, 3);

pushq
pushq
subq
movq
movq
movl
call
movq
movq
addq
POPg
POPg
ret

long):
%rbp

%rbx

$8, %rsp
%rdir, %rbx
%rsi, %rbp
$16, %ed
malloc

%rbp, (%rax)
%rbx, 8(%rax)
$8, %rsp
%rbx

%rbp

34

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Add a Node at Head of List

% Line 1: Create new node (and pointer to it)
= Uninitialized space in the Heap returned by mal loc()

List addNode(List list, long v) addNode(N*, long):

{ -
Node *node = (Node *) subq $8, %rsp

malloc(sizeof(Node)); I

node->val = v; movl $16, %edi
node->next = list; call malloc
return node;

+

node: Sl 0 LL:

: > 5 1
% /NULL

35

W UNIVERSITY of WASHINGTON

L15: Structs and Alignment

Add a Node at Head of List

\/
0.0

Line 2 & 3: Initialize new node

CSE351, Autumn 2016

addNode (N*,

mov(q
mov(q

long):

%rbp, (%rax)
%rbx, 8(%rax)

List addNode(List list, long v)

{
Node *node = (Node *)

malloc(sizeof(Node));

node->val = v;
node->next = list;
return node;

ks

node: | 3 Ll

1

5] A

NULL

36

WA/ UNIVERSITY of WASHINGTON L15: Structs and Alignment

Add a Node at Head of List

« Line 4: Store new head of list back into LL variable

= Local pointer node gets deallocated

CSE351, Autumn 2016

List addNode(List list, long v)

{
Node *node = (Node *)

malloc(sizeof(Node));
node->val = v;

addNode (N*,

addq

ret

long):

$8, %rsp

node->next = list;
return node;

node: 3 LL:

1

5] A

NULL

37

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Get the n-th Value on Linked List

+ Follow nodes in memory
" End of list indicated when next field = NULL

long getNode(List list, Int 1) { getNode:
INt count = 0; movl $0, %eax
while (list) { Jmp L4
iIT (count==1) L7:
return list->val; cmpl Y%esi1, %eax
count++; Jjne L5
list = list->next; > mov(q (%rdir), %rax
} ret
return -1; -L5:
} addl $1, %eax
> Mov(q 8(%rdir), %rdi
o -L4:
+» setNode to change value Cesi R
of n-th node looks very similar| jne .L7
movq $-1, %rax
ret s

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Manually Creating Linked List in Assembly

+ Initial data (e.g. global vars) placed in memory using
assembly directives

Old list (3—=5—1) using New list (1-2—3) using assembly directives
addNode() and labels (see linkedlist.s)
movl $1, %esi movq $N1, %rbp
movl $0, %edi -
call addNode .data # Static Data
movl $5, %esi .align 16 # struct size
movq Wrax, %rdi N1:
call addNode -quad 1 # Nl->val
movl $3, %esi .quad N2 # N1l->next
mov(q Wrax, %rdi N3:
call addNode .quad 3 # N3->val
mov(q %rax, %rbp -quad O # N3->next (NULL)
N2:
-quad 2 # N2->val
-quad N3 # N2->next

39

w UNIVERSITY of WASHINGTON L15: Structs and Alignment CSE351, Autumn 2016

Additional Linked List Functionality

+» Think about how you might implement the following
functions in C and what the x86-64 code probably
looks like:
= Remove a nhode from the list
= Append a node to the end of the list
= Delete/free and entire list
= Join two lists together
= Sort alist

+» How would the functions change if the “value” we
were storing in each node was a string instead of an
integer?

40

