CSE351, Autumn 2016

WA UNIVERSITY of WASHINGTON

L06: Floating Point

Floating Point

CSE 351 Autumn 2016

Instructor:

Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

0.99 (ACTUALY NUMBER IND\GATING IFYOU ENCOUNTER
0.0000000372 FRBIDDEN GIRD-ACEFTED AS AFACTOID 15 MADELP A NUMBER HIGHER
LESSTHAN 1) REGION CANON BY ORTHODOX. ("eveRy 7 Yemrs. samnce THAN THIS, YOU'RE
‘ e T MAHEMATCANS __ -~ SASTHERE NOT DOWNGREALMATH
s ARE 7.5 ET)
i i k |m L LI LI,J L I.‘UMEKFLCRE.D x!_l L | il i
1 o0 1)2 |3 NN S7 8 9
A — - = r
NEGATIVE b~ PARTHENON 2.9299372 E:EI.&F LARGEST
IMITATOR" SUNFLOWERS (€ AND T, OF tiog EVEN FRIME

NUMBERS GOLDEN RATIO OBSERVED)
(DONOTUSE) \WJAIT COME BRCk,
T HAVE FRLTS!

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

http://xkcd.com/899/

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Administrivia

+ Lab 1 due today at 5pm (prelim) and Friday at 5pm
= Use Makefile and DLC and GDB to check & debug

+» Homework 1 (written problems) released tomorrow

+» Plazza

= Response time from staff members often significantly slower
on weekends

= Would love to see more student participation!

CSE351, Autumn 2016

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

Integers

>

Binary representation of integers

"= Unsigned and signed

L)

" Castingin C

>

Consequences of finite width representations

L)

= Qverflow, sign extension

o®

+ Shifting and arithmetic operations
+» Multiplication

*

WA/ UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Multiplication

+» What do you get when you multiply 9 x 9?
S]" "'5('\630\ Q\(hr‘r\ A§5 r}

>

» What about 239 x 3?

(ZH) R >° — s*’h)W\LD’\’ ohly
2 "’Z Yepv‘\.;\ [Ar\s'l'jl"\f’a\

» X
+1 o ’
/232-—‘ Z — V\B\ V'(\Q(@S(’\;\'\'G\\b\‘e Ih .52 'IorL ':v\‘\'

s =231 x 2317
62
"'2 — Co \a\fﬁe!

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Unsigned Multiplication in C

Operands:
w bits v
R

True Product:
- 2w bits

u-v

Discard w bits: UMult,(u , v)
w bits

+» Standard Multiplication Function
= |gnores high order w bits

+» Implements Modular Arithmetic

= UMult,(u, v)=u-v mod 2%

WA UNIVERSITY of WASHINGTON LO6: Floating Point

CSE351, Autumn 2016

Multiplication with shift and add

+ Operation u<<k gives u*2k

= Both sighed and unsigned

Operands: w bits - k .
» 2k [0] ses_JOIAIOI s*=_JOJO
True Product: w + k bits u- 2k oo 0] e 10]0
Discard k bits: w bits UMult,(u, 2%) [eee 0] e« [0[O
TMult, (U, 2%)
+» Examples:
" u<<3 == Uu * 8
" uU<<5 - u<<3 == u * 24=u *(29)
" Most machines shift and add faster than multiply
- Compiler generates this code automatically F=l4za]

YT VISA B 3V

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Number Representation Revisited

+» What can we represent in one word?
= Signed and Unsigned Integers
" Characters (ASCII)
= Addresses

+» How do we encode the following:
" Real numbers (e.g. 3.14159) il
= Very large numbers (e.g. 6.02x1023)Avoqsdvo's Floating
= Very small numbers (e.g. 6.626x1037\wd5[Point
= Special numbers (e.g. ==, NaN)

==

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Goals of Floating Point

+» Support a wide range of values

= Both very small and very large

*

o

Keep as much precision as possible

L)

+» Help programmer with errors in real arithmetic

= Support +oo, -oo, Not-A-Number (NaN), exponent overflow
and underflow

Keep encoding that is somewhat compatible with
two’s complement

*

0‘0

WA/ UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Floating point topics

% Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
+ Floating-point in C

+» There are many more details that
we won’t cover

" |t's a 58-page standard...

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Representation of Fractions

“Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X}(\;V{’V\\
20 2- 1
0.5 ozzsz g\?i b Oézg

+ Example: 10.1010, = 1x21 + 1x271 + 1x23 =2.625,,

representation:

+» Binary point numbers that match the 6-bit format f“

above range from 0 (00.0000,) to 3%9375 (11.1110,)
= 5-2

10

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Scientific Notation (Decimal)

mantissa exponent
/
T~6.02,,x 103

I N\

decimal point radix (base)

+» Normalized form: exactly one digit (non-zero) to left
of decimal point

+» Alternatives to representing 1/1,000,000,000
" Normalized: 1.0x10°
= Not normalized: 0.1x10%10.0x1010

11

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Scientific Notation (Binary)

mantissa exponent
/
T>1.01, x 21

I N\

binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

® Declare such variable in C as float

12

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Scientific Notation Translation .
shif point right: V0.1 X2

= Consider the number 1.011,x24 shit4 et e BAO D

" To convert to ordinary number, shift the decimal to the right
by 4
- Result: 10110, = 22,

" For negative exponents, shift decimal to the left
. 1.011,x22=>0.01011, = 0.34375

" Go from ordinary number to scientific notation by shifting
until in normalized form

. 1101.001, — 1.101001,x23

- Practice: Convert 11.375,, to binary scientific notation
S’!+z41 + o0 2“3—) 0.125

I 77 = on0 = | Lono 7 |

» Practice: Convert 1/5 to bma
o ez —% ORI

W UNIVERSITY of WASHINGTON LO6: Floating Point

CSE351, Autumn 2016

IEEE Floating Point

« |EEE 754

L)

Established in 1985 as uniform standard for floating point arithmetic
Main idea: make numerically sensitive programs portable

Specifies two things: representation and result of floating operations
" Now supported by all major CPUs

+ Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible
"= Engineers want them to be easy to implement and fast
" |nthe end:

- Scientists mostly won out

Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware

Float operations can be an order of magnitude slower than integer ops

14

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Floating Point Encoding

+» Use normalized, base 2 scientific notation:
= Value: 1 x Mantissa x 2xponent
= Bijt Fields: (-1)° x 1.M x 2(E+bias)

+» Representation Scheme:
- (O is positive, 1 is negative)

" Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

"= Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vectorE 4 epacite Fields pat Together

3130 23 22 in_one encokina! @
e[W]
1 bit 8 bits 23 bits

15

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

CSE351, Autumn 2016

The Exponent Field

« Use biased notation

= Read exponent as unsigned, but with bias of —(2%1-1) =-127
= Representable exponents roughly %2 positive and %2 negative
" Exponent O (Exp =0) is represented as E=0b 0111 1111

+» Why biased?
= Makes floating point arithmetic easier

" Makes somewhat compatible with two’s complement

» Practice: To encode in biased notation, subtract the bias (add
127) then encode in unsigned: T Yere § bits g
" Exp=1 —> 128 —>E=0bl000 0000 i Ahe 32LE Flocting
" Exp=127 > 254 —>E=0bli (] 1O ot enceding
" Exp=-63 » (4 —>E=0bO0Ol00 0000

16

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

The Mantissa Field

31 30 2322
= | X]
1 bit 8 bits 23 bits

(-1)° x (1 . M) x 2(E+bias)

+» Note the impl(j)citél igg‘ront oﬂthe M bit vector
= Example: Ob 0011 1plll 1100 0000 0000 0000 0000 0000

isread as 1.1,=1.5,,, not 0.1,=0.5,,
= Gives us an extra bit of precision

+» Mantissa “limits”
= | ow values near M = 0b0...0 are close to 25

®" High values near M = 0b1...1 are close to 2P+l
& L sA s posthion causes overTloy wto B <E“P+‘) 17

WA/ UNIVERSITY of WASHINGTON

L06: Floating Point

CSE351, Autumn 2016

Precision and Accuracy

+ Precision is a count of the number of bits in a
computer word used to represent a value
= Capability for accuracy

% Accuracy is a measure of the difference between the

actual value of a number and its computer
representation

4

" High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

= Example: float p1 = 3.14;

- p1 will be represented using all 24 bits of the significand (highly
precise), but is only an approximation (not accurate)

18

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Need Greater Precision?

+» Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32
E(11) | M (20 of 52) [T

31 0

M (32 of 52) 1

" Cvariable declared as double
= Exponent bias is now —(21°-1) =-1023

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

= Disadvantages: more bits used,
slower to manipulate

19

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

Representing Very Small Numbers

+» But wait... what happened to zero?

S:O)E:O)MCD 0-1%

= Special case: E and M all zeros =0

- Two zeros! But at least 0x00000000 = O like integers

+ New numbers closest to O: Gaps! b
" 3=1.0...0,x27126 = 2-126 -co 1
b= 1@)_}(_)\;2)(2—126 = 2-126 4 9-149 O ;

23 bits

Normalization and implicit 1 are to blame
Special case: E =0, M # 0 are denormalized numbers

CSE351, Autumn 2016

-\27

= Using standard encoding 0x00000000 = +1.0*2 =71

+ 0O

400

20

WA/ UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Denorm Numbers

« Denormalized numbers
" Noleading 1

= Careful! Implicit exponentis—126 (not —127) even though

E = 0x00 — rovmally 2722 Lid inshend ing L

+» Now what do the gaps look like?
N
a= ® Smallest norm: + 1.0...0,,, %216 = + 2-126 7 O 8aP

C=® Largestdenorm: + 0.1...1,,,%21%6 = + (27126 — 2-149)
= Smallest denorm: * 0.0...01,,, %2126 = + 27149
ey 44 So much
Curvently c-a = L i closer to 0

\‘F W l’\(u} \AS(J &(norm t&r)meh'} (5‘\
‘H'\en Q /z \‘L‘-’f 1 -1S0 \
Y W — 9~ \26_2_”:‘4-2_ ;§o \argu gap bt een c T

21

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

Other Special Cases

A 1
Ve \
» E=0xFF, M =0: oo

= e.g., divisionbyO
= Still work in comparisons!

2+ E=0xFF, M #0: Not a Number (NaN)

" e.g., square root of negative number, 0/0, oo—co
" NaN propagates through computations
" Value of M can be useful in debugging

% Largest value (besides o)?
" E = 0OxFF has now been taken!

" E = OxFE has largest: 1.1...1,x2127 = 2128 — 3104
Exp = 254-17=17 R

24 ones m arow

= (72) %1 Bx)= 2\13__2“’“‘ V’S(

CSE351, Autumn 2016

22

WA/ UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Floating Point Encoding Summary

Exponent \WELY: Meaning
w\\‘i O0x00 0 +0
0™ 0x00 non-zero + denorm num
Ox01 — OxFE anything + norm num
X OxFF 0 t oo
o X
A OxFF non-zero NaN

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Distribution of Values

+» What ranges are NOT representable?
= Between largest norm and infinity Overflow

= Between zero and smallest denorm Underflow
<%

= Between norm numbers? Rounding b o e
s e
+ Given a FP number, what’s the bit patter oﬁche next

From o|b|\| Wiy [0..-0

largest representable number? .. ofowm|o. o
_2‘5

" What is this “step” when Exp=0? 72 SN R R
\oo-23 += °r ‘

" What is this “step” when Exp =100? 2 =2 J Exp it lavger
« Distribution of values is denser toward zero

A
(Nt(* lovo B \(‘o\mA'\r\ﬂ \{ overt I
Kk A A A—A—A—A—Aﬂi—Wﬂii—A—A—A—A—‘—A A A—
15 -10 5 el /g 5 ~10 15

¢ Denormalized A Normalized Infinity

24

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

CSE351, Autumn 2016

Peer Instruction Question

Let FP[1,2) = # of representable floats between 1 and 2
Let FP[2,3) = # of representable floats between 2 and 3

+» Which of the following statements is true?
= Vote at http://PollEv.com/justinh

= Extra: what are the actual values of FP[1,2) and FP[2,3)?
- Hint: Encode 1, 2, 3 into floating point

132

A= 10x7° — olon t|oo...o

(A) / 2=1.0%x7" — 0 |lowe W06 0

(B) FP[1,2) == FP[2,3) [3=1.1%x2 — 0 [o» wwp0..©
(C) EPILDZT (ean e al by of mactisss)
z r c.\’} \e ¢l hd st Sigh:i?mw’\"

(D) [t depends FPM=7 gl L

25

W UNIVERSITY of WASHINGTON LO6: Floating Point

CSE351, Autumn 2016

Floating Point Operations: Basic Idea

Value = (-1)"xMantissax2Fxponent

E M
+ X +¢ Yy = Round(X + Yy)
+ X *e Yy = Round(X * y)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into desired precision:
- Possibly over/underflow if exponent outside of range
- Possibly drop least-significant bits of mantissa to fit into M bit vector

26

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Floating Point Addition |Line up the binary points

2 (—1)PIxManl1x28Pl + (-1)>2xMan2x2Exr2

> sesme 1> e o
» Exact Result: (—1)>xManx2&x? 77 1-0101%2%
= Sign 5, mantissa Man: [—— E1-E2 ——
- Result of signed align & add (=1)°>' Man1
= Exponent E: E1 + (=1)** Man2
(—1)°> Man

+» Adjustments:
= If Man = 2, shift Man right, increment E
= if Man <1, shift Man left k positions, decrement E by k
= QOver/underflow if E out of range

®" Round Man to fit mantissa precision
27

WA/ UNIVERSITY of WASHINGTON L06: Floating Point

Floating Point Multiplication

e (—1)PIxM1x 281 x (—1)>?xM2x2E2

+» Exact Result: (—1)°xMx 2F
= Sign o s1/s2
" Mantissa Man: M1 x M2
" Exponent E: E1+E2

+» Adjustments:

= If Man = 2, shift Man right, increment E
= Qver/underflow if E out of range

"= Round Man to fit mantissa precision

CSE351, Autumn 2016

28

W UNIVERSITY of WASHINGTON

L06: Floating Point

CSE351, Autumn 2016

Summary

+ Floating point approximates real numbers:
3130 23 22

E@®) | M (23)

®= Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = —(2%¥1-1))
- Outside of representable exponents is overflow and underflow

" Mantissa approximates fractional portion of binary point

- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

°

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero + denorm num
Ox01 — OxFE anything + norm num
OxFF 0) t oo
OxFF non-zero NaN

29

WA/ UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

BONUS SLIDES

More details for the curious. These slides expand on
material covered today, so while you don’t need to
read these, the information is “fair game.”

+ Tiny Floating Point Example
+ Distribution of Values

30

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Visualization: Floating Point Encodings

-co oo
| -Normalized ,-Denorm ; , ;+Denorm, +Normalized
I I /l\ I I
NaN
NaN
! -0 +0 —

31

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Tiny Floating Point Example

s |exp frac
1 4 3

+ 8-bit Floating Point Representation
" the sign bit is in the most significant bit.
" the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

+» Same general form as IEEE Format
" normalized, denormalized
" representation of O, NaN, infinity

32

YA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Dynamic Range (Positive Only)

s exp frac E Value
0 0000 Q00 -6 0
0 0000 001 -6 1/8%1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8%x1/64 = 2/512
numbers
© 0000 110 -6 6/8%1/64 = 6/512
Q@ 0000 111 -6 7/8%x1/64 = 7/512 largest denorm
© 0001 000 -6 8/8%1/64 = 8/512 smallest norm
© 0001 001 -6 9/8%1/64 = 9/512
0 0110 110 1 14/8x1/2 = 14/16
. 0 0110 111 1 15/8%1/2 = 15/16 closest to 1 below
Normalized
0 0111 000 0 8/8x1 =1
numbers 0 0111 0o 0 0/8%1 - 9/8 closest to 1 above
0 0111 010 0 10/8x1 = 10/8
0 1110 110 7 14/8x128 = 224
© 1110 111 7 15/8%128 = 240 largest norm
© 1111 00O n/a int

33

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Distribution of Values

«» 6-bit IEEE-like format

= e =3 exponent bits

s |exp frac

= f =2 fraction bits 1 3 2
" Bjasis 23-1-1=13

+ Notice how the distribution gets denser toward zero.

Ak A A A A A AAAMMEBERRMMMAALL A A A A A A—A—

-15 -10 -5 0 S 10 15
¢ Denormalized A Normalized Infinity

34

WA UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Autumn 2016

Distribution of Values (close-up view)

«» 6-bit IEEE-like format

= e =3 exponent bits

s |exp frac

= =2 fraction bits 1 3 2
" Biasis 3

A A A A A A AAAO®OGOGOOOOAALAAAALA A A A A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

35

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Interesting Numbers {single, double}
Description exp frac Numeric Value

+ Zero 00...00 00...00 0.0

» Smallest Pos. Denorm. 00...00 00...01 2~ 123,52} * - {126,1022}

= Single=1.4*10%
" Double = 4.9 * 10324
+ Largest Denormalized 00..00 11..11 (1.0 — g) * 2~ {126,1022}
" Single=~1.18 * 10738
" Double =2.2 * 107308

» Smallest Pos. Norm. 00..01 00...00 1.0 * 2-{126,1022}
= Just larger than largest denormalized
+» One 01..11 00...00 1.0
+ Largest Normalized 11..10 11..11 (2.0 — g) * 2{127,1023}

" Single=3.4* 1038
= Double = 1.8 * 10308

36

WA/ UNIVERSITY of WASHINGTON LO6: Floating Point CSE351, Autumn 2016

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

% Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider0-=0*=0
= NaNs problematic

- Will be greater than any other values
- What should comparison yield?

= Otherwise OK
- Denorm vs. normalized
« Normalized vs. infinity

37

