Floating Point

CSE 351 Autumn 2016

Instructor:

Justin Hsia

Teaching Assistants:

Chris Ma

Hunter 7ahn

John Kaltenbach

Kevin Bi

Sachin Mehta

Suraj Bhat

Thomas Neuman

Waylon Huang

Xi Liu

Yufang Sun

http://xkcd.com/899/

Administrivia

- Lab 1 due today at 5pm (prelim) and Friday at 5pm
 - Use Makefile and DLC and GDB to check & debug
- Homework 1 (written problems) released tomorrow
- Piazza
 - Response time from staff members often significantly slower on weekends
 - Would love to see more student participation!

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
- Multiplication

Multiplication

What do you get when you multiply 9 x 9?

81-> need extra digit

♦ What about 2³⁰ x 3? (2+1)

$$2^{30} \times 5?$$

$$2^{2} + 2^{30} \rightarrow \text{not representable in } 32 - \text{bit int}$$

*
$$-2^{31} \times -2^{31}$$
?
+ $2^{62} \rightarrow 50$ large!

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ❖ Operation u<<k gives u*2^k
 - Both signed and unsigned

- Examples:
 - u << 3 == u * 8
 - u << 5 u << 3 == u * 24 = u * (32-8)
 - Most machines shift and add faster than multiply
 - · Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³) Avogadro's Floating
 - Very small numbers (e.g. 6.626×10⁻³⁴) Planck's
 - Special numbers (e.g. ∞, NaN)

Floating Point

Goals of Floating Point

- Support a wide range of values
 - Both very small and very large
- Keep as much precision as possible
- Help programmer with errors in real arithmetic
 - Support +∞, -∞, Not-A-Number (NaN), exponent overflow and underflow
- Keep encoding that is somewhat compatible with two's complement

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- **Example:** $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
- * Binary point numbers that match the 6-bit format $\sqrt{}$ above range from 0 (00.0000₂) to 3.9375 (11.1110₂) = 4 2

Scientific Notation (Decimal)

L06: Floating Point

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized:
 1.0×10⁻⁹
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float

Scientific Notation Translation

- * Consider the number $1.011_2 \times 2^4$ shift point left: 0.1011×2^5
 - To convert to ordinary number, shift the decimal to the right by 4
 - Result: $10110_2 = 22_{10}$
 - For negative exponents, shift decimal to the left
 - $1.011_2 \times 2^{-2} => 0.01011_2 = 0.34375_{10}$
 - Go from ordinary number to scientific notation by shifting until in *normalized* form
 - $1101.001_2 \rightarrow 1.101001_2 \times 2^3$
- **Practice:** Convert 11.375_{10} to binary scientific notation 8+2+1+0.25+0.125

$$2^{3}+2^{1}+2^{6}+2^{-7}=1011.011=1.0111\times2^{3}$$

Practice: Convert 1/5 to binary $\frac{1}{5} - \frac{3}{15} = \frac{3}{40}, \frac{3}{40} - \frac{1}{16} = \frac{1}{80} = \frac{1}{5} \left(\frac{1}{16}\right)$

$$\frac{1}{5} - \frac{1}{8} = \frac{3}{40}, \frac{3}{40} - \frac{1}{16} = \frac{1}{80} = \frac{1}{5} \left(\frac{1}{16} \right)$$

IEEE Floating Point

❖ IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times Mantissa \times 2^{Exponent}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E+bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
 Secrete fields with tweth

1 bit 8 bits

23 bits

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of $-(2^{w-1}-1) = -127$
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, subtract the bias (add 127) then encode in unsigned: these 8 bits go in the 32-bit floating point encoding

■ Exp = 1
$$\rightarrow$$
 \28 \rightarrow E = 0b \ 000 \ 0000

■ Exp =
$$127 \rightarrow 254 \rightarrow E = 0b \mid 111 \mid 1110$$

■ Exp =
$$-63 \rightarrow 64 \rightarrow E = 0b 0100 000$$

The Mantissa Field

$$(-1)^{s} \times (1.M) \times 2^{(E+bias)}$$

- Note the implicit 1 in front of the M bit vector
 - Example: $0b \ 0011 \ 1111 \ 1100 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$ is read as $1.1_2 = 1.5_{10}$, not $0.1_2 = 0.5_{10}$
 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2 Exp+1 (Exp+1) 17

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capability for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the significand (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $-(2^{10}-1) = -1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers
- New numbers closest to 0:

$$a = 1.0...0_{2} \times 2^{-126} = 2^{-126}$$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Careful! Implicit exponent is -126 (not -127) even though $E = 0x00 \rightarrow \text{normally} \quad 2^{0-127} = 2^{-127}$, but instead using 2^{-126}
- Now what do the gaps look like?
- Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$
- $C = Largest denorm: \pm 0.1...1_{two} \times 2^{-126} = \pm (2^{-126} 2^{-149})$
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$

Currently
$$c-a=2^{-149}$$
 So much closer to 0 if we had used denorm exponent of 2^{127} , then $\overline{C}=2^{-127}-2^{-150}$ and $\overline{C}-a=2^{-126}-2^{-127}+2^{-150}$, so larger gap between $\overline{C} \stackrel{?}{\sim} \alpha$.

Other Special Cases

- \star E = 0xFF, M = 0: ± ∞
 - e.g., division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g., square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- Largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$ $E_{xp} = 254 - 127 = 127$ $= (2^{24} - 1) \times 2^{73} \times 2^{127} = 2^{128} - 2^{104}$ $= (2^{24} - 1) \times 2^{73} \times 2^{127} = 2^{128} - 2^{104}$

Floating Point Encoding Summary

	Exponent	Mantissa	Meaning	
	0x00	0	± 0	
	0x00	non-zero	± denorm num	
	0x01 – 0xFE	anything	± norm num	
	OxFF	0	± ∞	
	OxFF	non-zero	NaN	

smallest exponent

largest exponent

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow
 - Between zero and smallest denorm **Underflow**
 - Between norm numbers? Rounding
- Given a FP number, what's the bit pattern of the next largest representable number? next Num is O ON IN 100.

 - What is this "step" when Exp = 0? 2^{-23} • What is this "step" when Exp = 100? $2^{100-23} = 2^{74}$
- Distribution of values is denser toward zero

Peer Instruction Question

Let FP[1,2) = # of representable floats between 1 and 2 Let FP[2,3) = # of representable floats between 2 and 3

- Which of the following statements is true?
 - Vote at http://PollEv.com/justinh
 - **Extra:** what are the actual values of FP[1,2) and FP[2,3)?
 - Hint: Encode 1, 2, 3 into floating point

(A)
$$FP[1,2) > FP[2,3)$$

(B)
$$FP[1,2) == FP[2,3)$$

(C)
$$FP[1,2) < FP[2,3)$$

FP[1,2) > FP[2,3)
$$1 = 1.0 \times 2^{\circ} \xrightarrow{FP} 0 | 0111 | 1111 | 00...0$$

$$2 = 1.0 \times 2^{\circ} \xrightarrow{FP} 0 | 0111 | 1111 | 00...0$$

$$2 = 1.0 \times 2^{\circ} \xrightarrow{FP} 0 | 0111 | 1111 | 00...0$$

$$3 = 1.1 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$3 = 1.1 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$3 = 1.1 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$3 = 1.1 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$3 = 1.1 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow{PP} 0 | 0111 | 1111 | 00...0$$

$$4 = 1.0 \times 2^{\circ} \xrightarrow$$

Floating Point Operations: Basic Idea

Value = $(-1)^{s}$ ×Mantissa×2^{Exponent}

$$\star x +_f y = Round(x + y)$$

$$* x *_{f} y = Round(x * y)$$

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector

Floating Point Addition

Line up the binary points

- \star (-1)^{S1}×Man1×2^{Exp1} + (-1)^{S2}×Man2×2^{Exp2}
 - Assume E1 > E2

- ❖ Exact Result: (−1)^S×Man×2^{Exp}
 - Sign S, mantissa Man:
 - Result of signed align & add
 - Exponent E: E1

- Adjustments:
 - If Man ≥ 2, shift Man right, increment E
 - if Man < 1, shift Man left k positions, decrement E by k
 - Over/underflow if E out of range
 - Round Man to fit mantissa precision

Floating Point Multiplication

$$(-1)^{S1} \times M1 \times 2^{E1} \times (-1)^{S2} \times M2 \times 2^{E2}$$

- * Exact Result: $(-1)^S \times M \times 2^E$
 - Sign S: s1 ^ s2
 - Mantissa Man: M1 × M2
 - Exponent E: E1 + E2
- Adjustments:
 - If Man ≥ 2, shift Man right, increment E
 - Over/underflow if E out of range
 - Round Man to fit mantissa precision

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = -(2^{w-1}-1))
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Exponent	Mantissa	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

BONUS SLIDES

More details for the curious. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

- Tiny Floating Point Example
- Distribution of Values

Visualization: Floating Point Encodings

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp	frac	Е	Value	
Denormalized numbers	Ø ØØØØØ ØØØØ	001	-6 -6 -6	0 1/8*1/64 = 1/512 2/8*1/64 = 2/512	closest to zero
	0 0000 0 0000		-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512	largest denorm
	0 0001 0 0001 		-6 -6	8/8*1/64 = 8/512 9/8*1/64 = 9/512	smallest norm
Normalized	0 0110 0 0110	111	-1 -1	14/8*1/2 = 14/16 15/8*1/2 = 15/16	closest to 1 below
numbers	0 01110 01110 0111	001	0 0 0	8/8*1 = 1 9/8*1 = 9/8 10/8*1 = 10/8	closest to 1 above
	 0 1110 0 1110		7 7	14/8*128 = 224 15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Interesting Numbers

{single,double}

Description

exp frac

Numeric Value

Zero

00...00 00...00

0.0

Smallest Pos. Denorm.

00...00 00...01

2-{23,52} * **2**-{126,1022}

• Single $\approx 1.4 * 10^{-45}$

■ Double $\approx 4.9 * 10^{-324}$

Largest Denormalized

00...00 11...11

 $(1.0 - \varepsilon) * 2^{-\{126,1022\}}$

• Single $\approx 1.18 * 10^{-38}$

■ Double $\approx 2.2 * 10^{-308}$

Smallest Pos. Norm.

00...01 00...00

Just larger than largest denormalized

One

01...11 00...00

Largest Normalized

11...10 11...11

1.0

• Single $\approx 3.4 * 10^{38}$

11...10 11.

 $(2.0 - \varepsilon) * 2^{\{127,1023\}}$

 $1.0 * 2^{-\{126,1022\}}$

■ Double $\approx 1.8 * 10^{308}$

Special Properties of Encoding

- ❖ Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity