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Administrivia

+ Lab 1 due today at 5pm (prelim) and Friday at 5pm
= Use Makefile and DLC and GDB to check & debug

+» Homework 1 (written problems) released tomorrow

+» Plazza

= Response time from staff members often significantly slower
on weekends

= Would love to see more student participation!
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Integers

>

Binary representation of integers

"= Unsigned and signed

L)

" Castingin C

>

Consequences of finite width representations

L)

= Qverflow, sign extension

o®

+ Shifting and arithmetic operations
+» Multiplication

*
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Multiplication

+» What do you get when you multiply 9 x 9?
S]" "'5('\630\ Q\(hr‘r\ A§5 r}

>

» What about 239 x 3?

(ZH) R >° — s*’h)W\LD’\’ ohly
2 "’Z Yepv‘\.;\ [Ar\s'l'jl"\f’a\

» X
+1 o ’
/232-—‘ Z — V\B\ V'(\Q(@S(’\;\'\'G\\b\‘e Ih .52 'IorL ':v\‘\'

s =231 x 2317
62
"'2 — Co \a\fﬁe!
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Unsigned Multiplication in C

Operands:
w bits v
R

True Product:
- 2w bits

u-v

Discard w bits: UMult,(u , v)
w bits

+» Standard Multiplication Function
= |gnores high order w bits

+» Implements Modular Arithmetic

= UMult,(u, v)=u-v mod 2%
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Multiplication with shift and add

+ Operation u<<k gives u*2k

= Both sighed and unsigned

Operands: w bits - k .
» 2k [0] ses_JOIAIOI s*=_JOJO
True Product: w + k bits u- 2k oo 0] e 10]0
Discard k bits: w bits UMult,(u, 2%) [ eee 0] e« [0[O
TMult, (U, 2%)
+» Examples:
" u<<3 == Uu * 8
" uU<<5 - u<<3 == u * 24=u *(29)
" Most machines shift and add faster than multiply
- Compiler generates this code automatically F=l4za]

YT VISA B 3V
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Number Representation Revisited

+» What can we represent in one word?
= Signed and Unsigned Integers
" Characters (ASCII)
= Addresses

+» How do we encode the following:
" Real numbers (e.g. 3.14159) il
= Very large numbers (e.g. 6.02x1023)Avoqsdvo's Floating
= Very small numbers (e.g. 6.626x1037\wd5[  Point
= Special numbers (e.g. ==, NaN)

==
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Goals of Floating Point

+» Support a wide range of values

= Both very small and very large

*

o

Keep as much precision as possible

L)

+» Help programmer with errors in real arithmetic

= Support +oo, -oo, Not-A-Number (NaN), exponent overflow
and underflow

Keep encoding that is somewhat compatible with
two’s complement

*

0‘0
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Floating point topics

% Fractional binary numbers

» |EEE floating-point standard
+ Floating-point operations and rounding
+ Floating-point in C

+» There are many more details that
we won’t cover

" |t's a 58-page standard...
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Representation of Fractions

“Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit /X}( \;V{’V\\
20 2- 1
0.5 ozzsz g\?i b Oézg

+ Example: 10.1010, = 1x21 + 1x271 + 1x23 =2.625,,

representation:

+» Binary point numbers that match the 6-bit format f“

above range from 0 (00.0000,) to 3%9375 (11.1110,)
= 5-2

10
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Scientific Notation (Decimal)

mantissa exponent
/
T~6.02,,x 103

I N\

decimal point radix (base)

+» Normalized form: exactly one digit (non-zero) to left
of decimal point

+» Alternatives to representing 1/1,000,000,000
" Normalized: 1.0x10°
= Not normalized: 0.1x10%10.0x1010

11
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Scientific Notation (Binary)

mantissa exponent
/
T>1.01, x 21

I N\

binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

® Declare such variable in C as float

12
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Scientific Notation Translation .
shif point right: V0.1 X2

= Consider the number 1.011,x24 shit4 et e BAO D

" To convert to ordinary number, shift the decimal to the right
by 4
- Result: 10110, = 22,

" For negative exponents, shift decimal to the left
. 1.011,x22=>0.01011, = 0.34375

" Go from ordinary number to scientific notation by shifting
until in normalized form

. 1101.001, — 1.101001,x23

- Practice: Convert 11.375,, to binary scientific notation
S’!+z41 + o0 2“3—) 0.125

I 77 = on0 = | Lono 7 |

» Practice: Convert 1/5 to bma
o ez —% ORI
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IEEE Floating Point

« |EEE 754

L)

Established in 1985 as uniform standard for floating point arithmetic
Main idea: make numerically sensitive programs portable

Specifies two things: representation and result of floating operations
" Now supported by all major CPUs

+ Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible
"= Engineers want them to be easy to implement and fast
" |nthe end:

- Scientists mostly won out

Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware

Float operations can be an order of magnitude slower than integer ops

14
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Floating Point Encoding

+» Use normalized, base 2 scientific notation:
= Value: 1 x Mantissa x 2xponent
= Bijt Fields: (-1)° x 1.M x 2(E+bias)

+» Representation Scheme:
- (O is positive, 1 is negative)

" Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

"= Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vectorE 4 epacite Fields pat Together

3130 23 22 in_one encokina! @
e[ W ]
1 bit 8 bits 23 bits

15
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The Exponent Field

« Use biased notation

= Read exponent as unsigned, but with bias of —(2%1-1) =-127
= Representable exponents roughly %2 positive and %2 negative
" Exponent O (Exp =0) is represented as E=0b 0111 1111

+» Why biased?
= Makes floating point arithmetic easier

" Makes somewhat compatible with two’s complement

» Practice: To encode in biased notation, subtract the bias (add
127) then encode in unsigned: T Yere § bits g
" Exp=1 —> 128 —>E=0bl000 0000 i Ahe 32LE Flocting
" Exp=127 > 254 —>E=0bli (] 1O ot enceding
" Exp=-63 » (4 —>E=0bO0Ol00 0000

16
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The Mantissa Field

31 30 2322
= | X ]
1 bit 8 bits 23 bits

(-1)° x (1 . M) x 2(E+bias)

+» Note the impl(j)citél igg‘ront oﬂthe M bit vector
= Example: Ob 0011 1plll 1100 0000 0000 0000 0000 0000

isread as 1.1,=1.5,,, not 0.1,=0.5,,
= Gives us an extra bit of precision

+» Mantissa “limits”
= | ow values near M = 0b0...0 are close to 25

®" High values near M = 0b1...1 are close to 2P+l
& L sA s posthion causes overTloy wto B <E“P+‘) 17
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Precision and Accuracy

+ Precision is a count of the number of bits in a
computer word used to represent a value
= Capability for accuracy

% Accuracy is a measure of the difference between the

actual value of a number and its computer
representation

4

" High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

= Example: float p1 = 3.14;

- p1 will be represented using all 24 bits of the significand (highly
precise), but is only an approximation (not accurate)

18
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Need Greater Precision?

+» Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32
E(11) | M (20 of 52) [T

31 0

M (32 of 52) 1

" Cvariable declared as double
= Exponent bias is now —(21°-1) =-1023

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

= Disadvantages: more bits used,
slower to manipulate

19
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Representing Very Small Numbers

+» But wait... what happened to zero?

S:O)E:O)MCD 0-1%

= Special case: E and M all zeros =0

- Two zeros! But at least 0x00000000 = O like integers

+ New numbers closest to O: Gaps! b
" 3=1.0...0,x27126 = 2-126 -co 1
b= 1@)\_}(_)\;2)(2—126 = 2-126 4 9-149 O ;

23 bits

Normalization and implicit 1 are to blame
Special case: E =0, M # 0 are denormalized numbers

CSE351, Autumn 2016

-\27

= Using standard encoding 0x00000000 = +1.0*2 =71

+ 0O

400

20
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Denorm Numbers

« Denormalized numbers
" Noleading 1

= Careful! Implicit exponentis—126 (not —127) even though

E = 0x00 — rovmally 2722 Lid inshend ing L

+» Now what do the gaps look like?
N
a= ® Smallest norm: + 1.0...0,,, %216 = + 2-126 7 O 8aP

C=® Largestdenorm: + 0.1...1,,,%21%6 = + (27126 — 2-149)
= Smallest denorm: * 0.0...01,,, %2126 = + 27149
ey 44 So much
Curvently c-a = L i closer to 0

\‘F W l’\(u} \AS(J &(norm t&r)meh'} (5‘\
‘H'\en Q /z \‘L‘-’f 1 -1S0 \
Y W — 9~ \26_2_”:‘4-2_ ;§o \argu gap bt een c T

21
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Other Special Cases

A 1
Ve \
» E=0xFF, M =0: oo

= e.g., divisionbyO
= Still work in comparisons!

2+ E=0xFF, M #0: Not a Number (NaN)

" e.g., square root of negative number, 0/0, oo—co
" NaN propagates through computations
" Value of M can be useful in debugging

% Largest value (besides o)?
" E = 0OxFF has now been taken!

" E = OxFE has largest: 1.1...1,x2127 = 2128 — 3104
Exp = 254-17=17 R

24 ones m arow

= (72) %1 Bx )= 2\13__2“’“‘ V’S(

CSE351, Autumn 2016

22
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Floating Point Encoding Summary

Exponent \WELY: Meaning
w\\‘i O0x00 0 +0
0™ 0x00 non-zero + denorm num
Ox01 — OxFE anything + norm num
X OxFF 0 t oo
o X
A OxFF non-zero NaN
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Distribution of Values

+» What ranges are NOT representable?
= Between largest norm and infinity  Overflow

= Between zero and smallest denorm Underflow
<%

= Between norm numbers? Rounding b o e
s e
+ Given a FP number, what’s the bit patter oﬁche next

From o|b|\| Wiy [0..-0

largest representable number? .. ofowm|o. o
_2‘5

" What is this “step” when Exp=0? 72 SN R R
\oo-23 += °r ‘

" What is this “step” when Exp =100? 2 =2 J Exp it lavger
« Distribution of values is denser toward zero

A
(Nt(* lovo B \(‘o\mA'\r\ﬂ \{ overt I
Kk A A A—A—A—A—Aﬂi—Wﬂii—A—A—A—A—‘—A A A—
15 -10 5 el /g 5 ~10 15

¢ Denormalized A Normalized Infinity

24
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Peer Instruction Question

Let FP[1,2) = # of representable floats between 1 and 2
Let FP[2,3) = # of representable floats between 2 and 3

+» Which of the following statements is true?
= Vote at http://PollEv.com/justinh

= Extra: what are the actual values of FP[1,2) and FP[2,3)?
- Hint: Encode 1, 2, 3 into floating point

132

A= 10x7° — olon t|oo...o

(A) / 2=1.0%x7" — 0 |lowe W06 0

(B) FP[1,2) == FP[2,3) [3=1.1%x2 — 0 [o» wwp0..©
(C) EPILDZT (ean e al by of mactisss)
z r c.\’} \e ¢l hd st Sigh:i?mw’\"

(D) [t depends FPM=7 gl L

25
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Floating Point Operations: Basic Idea

Value = (-1)"xMantissax2Fxponent

E M
+ X +¢ Yy = Round(X + Yy)
+ X *e Yy = Round(X * y)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into desired precision:
- Possibly over/underflow if exponent outside of range
- Possibly drop least-significant bits of mantissa to fit into M bit vector

26
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Floating Point Addition |Line up the binary points

2 (—1)PIxManl1x28Pl + (-1)>2xMan2x2Exr2

> sesme 1> e o
» Exact Result: (—1)>xManx2&x? 77 1-0101%2%
= Sign 5, mantissa Man: [—— E1-E2 ——
- Result of signed align & add (=1)°>' Man1
= Exponent E: E1 + (=1)** Man2
(—1)°> Man

+» Adjustments:
= If Man = 2, shift Man right, increment E
= if Man <1, shift Man left k positions, decrement E by k
= QOver/underflow if E out of range

®" Round Man to fit mantissa precision
27
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Floating Point Multiplication

e (—1)PIxM1x 281 x (—1)>?xM2x2E2

+» Exact Result: (—1)°xMx 2F
= Sign o s1/s2
" Mantissa Man: M1 x M2
" Exponent E: E1+E2

+» Adjustments:

= If Man = 2, shift Man right, increment E
= Qver/underflow if E out of range

"= Round Man to fit mantissa precision

CSE351, Autumn 2016

28
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Summary

+ Floating point approximates real numbers:
3130 23 22

E@®) | M (23)

®= Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = —(2%¥1-1))
- Outside of representable exponents is overflow and underflow

" Mantissa approximates fractional portion of binary point

- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

°

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero + denorm num
Ox01 — OxFE anything + norm num
OxFF 0) t oo
OxFF non-zero NaN

29
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BONUS SLIDES

More details for the curious. These slides expand on
material covered today, so while you don’t need to
read these, the information is “fair game.”

+ Tiny Floating Point Example
+ Distribution of Values

30
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Visualization: Floating Point Encodings

-co oo
| -Normalized ,-Denorm ; , ;+Denorm, +Normalized
I I /l\ I I
NaN
NaN
! -0 +0 —

31
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Tiny Floating Point Example

s |exp frac
1 4 3

+ 8-bit Floating Point Representation
" the sign bit is in the most significant bit.
" the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

+» Same general form as IEEE Format
" normalized, denormalized
" representation of O, NaN, infinity

32
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Dynamic Range (Positive Only)

s exp frac E Value
0 0000 Q00 -6 0
0 0000 001 -6 1/8%1/64 = 1/512  closest to zero
Denormalized 0 0000 010 -6 2/8%x1/64 = 2/512
numbers
© 0000 110 -6 6/8%1/64 = 6/512
Q@ 0000 111 -6 7/8%x1/64 = 7/512  largest denorm
© 0001 000 -6 8/8%1/64 = 8/512 smallest norm
© 0001 001 -6 9/8%1/64 = 9/512
0 0110 110 1 14/8x1/2 = 14/16
. 0 0110 111 1 15/8%1/2 = 15/16  closest to 1 below
Normalized
0 0111 000 0 8/8x1 =1
numbers 0 0111 0o 0 0/8%1 - 9/8 closest to 1 above
0 0111 010 0 10/8x1 = 10/8
0 1110 110 7 14/8x128 = 224
© 1110 111 7 15/8%128 = 240 largest norm
© 1111 00O n/a int

33
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Distribution of Values

«» 6-bit IEEE-like format

= e =3 exponent bits

s |exp frac

= f =2 fraction bits 1 3 2
" Bjasis 23-1-1=13

+ Notice how the distribution gets denser toward zero.

Ak A A A A A AAAMMEBERRMMMAALL A A A A A A—A—

-15 -10 -5 0 S 10 15
¢ Denormalized A Normalized  Infinity

34
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Distribution of Values (close-up view)

«» 6-bit IEEE-like format

= e =3 exponent bits

s |exp frac

= =2 fraction bits 1 3 2
" Biasis 3

A A A A A A AAAO®OGOGOOOOAALAAAALA A A A A
-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

35
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Interesting Numbers {single, double}
Description exp frac Numeric Value

+ Zero 00...00 00...00 0.0

» Smallest Pos. Denorm.  00...00 00...01 2~ 123,52} * - {126,1022}

= Single=1.4*10%
" Double = 4.9 * 10324
+ Largest Denormalized 00..00 11..11 (1.0 — g) * 2~ {126,1022}
" Single=~1.18 * 10738
" Double =2.2 * 107308

» Smallest Pos. Norm. 00..01 00...00 1.0 * 2-{126,1022}
= Just larger than largest denormalized
+» One 01..11 00...00 1.0
+ Largest Normalized 11..10 11..11 (2.0 — g) * 2{127,1023}

" Single=3.4* 1038
= Double = 1.8 * 10308

36
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Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

% Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider0-=0*=0
= NaNs problematic

- Will be greater than any other values
- What should comparison yield?

= Otherwise OK
- Denorm vs. normalized
« Normalized vs. infinity

37



