CSE351, Autumn 2016

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

CSE351: Memory, Data, & Addressing |

CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma

Hunter Zahn
John Kaltenbach
Kevin Bi

Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu

Yufang Sun

MAN, | S5UCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

[0x3A28213A

Ox 6339332C,
Ux 7363632E.

| HATE YOU.

0k

http://xkcd.com/138/

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Administrivia

+ Start-of-Course survey due today at 5pm

" Can find staff’s mini-bios by clicking our faces on website
+» Lab 0 due Monday at 5pm

« All course materials can be found on the website
schedule

+» Plazza
" Please read using piazza.pdf on Piazza (@6)
= Can be risky to rely on e-mails

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Memory & data
Roadmap
C: Java:
car *¢ = malloc(sizeof(car)); Car ¢ = new Car();
c—>miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get_mpg(c); float mpg =
free(c); c.getMPG();

.‘~‘§§> ‘E_——"

Assembly get_mpg:

language: pushq — %rbp
mov(q »rSp, %rbp

popg %rbp

Lt I 0S:
\ 4
Machine 0111010000011000 -- !
code: 100011 01000001 0000000010
: 1000100111000010
110000011111101000011111
i
Computer

system:

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE351, Autumn 2016

Hardware: Logical View

CPU Memory

et (s

Etc.

CSE351, Autumn 2016

W UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: Physical View

N, USB...

(’,0 PCl-Express Slots

1 PCI-E X168, 2 PCI-E X1 Back Panel Connectors

|/O Intel ICH10 |

Chipset
controller

Seral ATA

Headears

Storage connections

CPU
(empty slot)

Socket 775
Core2 Quad!
Comed Extreme
Ready

Intel P45
Chipset

DDR2
10EE+MHZ
Dual Channel
hMemory Slots

Memory

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View

CSE351, Autumn 2016

iInstructions

/

LP Y,

Memory

» CPU executes instructions; memory stores data

» To execute an instruction, the CPU must:
= fetch an instruction;
= fetch the data used by the instruction; and, finally,
= execute the instruction on the data...
= which may result in writing data back to memory

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Hardware: 351 View

/ i-cache

take 470...

iInstructions

this week...

Memory

\CP U registerS/ data

+» The CPU holds instructions temporarily in the instruction cache
+» The CPU holds data temporarily in a fixed number of registers
» Instruction and operand fetching is hardware-controlled

» Data movement is programmer-controlled (in assembly)

« We'll learn about the instructions the CPU executes —
take CSE/EE470 to find out how it actually executes them ,

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View

/ i-cache

take 470...

How are data and
instructions
epresented?

data

ctions temporar’?w'—/
+» The CPU holds data temporarily in a

» Instruction and operand fetching is h

» Data movement is programmer-cont

iInstructions

CSE351, Autumn 2016

this week...

Memory

/\

How does a program

find its data in
memory?

(&

«» We'll learn about the instructions the CPU executes —

take CSE/EE470 to find out how it actually executes them

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Memory, Data, and Addressing

% Representing information as bits and bytes
+» Organizing and addressing data in memory
+» Manipulating data in memory using C

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Question 1:

/ i-cache

take 470...

iInstructions

this week...

Memory

/How are data and

instructions

represented?
% P

10

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Binary Representations

+» Base 2 number representation
= A base 2 digit (O or 1) is called a bit
" Represent 351,,as 0000000101011111, or 101011111,

+ Electronic implementation

Leading zeros

= Easy to store with bi-stable elements

CSE351, Autumn 2016

= Reliably transmitted on noisy and inaccurate wires

0
3.3V —
2.8V —
0.5V —
/_\r

0.0V —

1

— (0 —

N\

|

11

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

CSE351, Autumn 2016

Review: Number Bases

+~ Key terminology: digit (d) and base (B)
" |n base B, each digit is one of B possible symbols

= Value of i-th digit is d X B' where i starts at 0 and
increases from right to left

= ndigit numberd_.d_,...d;d,

— n-1 n-2 1 0
" value=d,_ ,xB"™+d ,xB"™2+ ... +d,;xB!+d,xB

" |n a fixed-width representation, left-most digit is called the

most-significant and the right-most digit is called the least-
significant

+ Notation: Base is indicated using either a prefix or a
subscript

12

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Describing Byte Values

» Binary (00000000, — 11111111,)

MSB

= Byte = 8 bits (binary digits)

~N 7
0 | 0 | 1 0 | 1 1 0 | 1
0*27 0*26 ‘| *25 0*24 ‘| *23 ‘| *22 0*21 ‘| *20
32 8 4 1 |=45,

LSB

» Decimal (0,5 — 255,
» Hexadecimal (00, — FF)

= Byte = 2 hexadecimal (or “hex” or base 16) digits
= Base 16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F
= Write FA1D37B,, in the Clanguage
- as OXFA1D37B or Oxfald37b

» More on specific data types later...

CSE351, Autumn 2016

MMOOTXIZ>O|0NOOKWINFO

R R R P
gl nl ol ol =lale| e N oo M w| N = o

13

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Question 2:

/ i-cache

take 470...

iInstructions

this week...

Memory

CPU “registers data
\ SeeE A\
/J \
\
How does a program

find its data in
memory?

o /

14

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Byte-Oriented Memory Organization

» Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

» The value of each byte in memory can be read and written

Programs refer to bytes in memory by their addresses
= Domain of possible addresses = address space

But not all values (e.g., 351) fit in a single byte...
= Store addresses to “remember” where other data is in memory
= How much memory can we address with 1-byte (8-bit) addresses?

» Many operations actually use multi-byte values

15

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Machine Words

+» Word size = address size = register size
+» Word size bounds the size of the address space and
memory

= word size = w bits » 2% addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 2% addresses
2% bytes ~ 1.8 x 101° bytes
= 18 billion billion bytes
= 18 EB (exabytes) = 16 EiB (exbibytes)

= Actual physical address space: 48 bits

16

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Aside: Units and Prefixes

*

o®

*

*

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

|IEC prefixes are unambiguously base 2

Here focusing on large numbers (exponents > 0)
Note that 103 = 210
S| prefixes are ambiguous if base 10 or 2

SI Size Prefix Symbol | IEC Size Prefix Symbol
10° Kilo- K 210 Kibi- Ki
106 Mega- M 220 Mebi- Mi
10° Giga- G 230 Gibi- Gi
1012 Tera- i 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
1018 Exa- E 260 Exbi- E1
1021 Zetta- Z 270 Zebi- Zi
10%4 Yotta- Y 280 Yobi- Yi

CSE351, Autumn 2016

17

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Word-Oriented Memory Organization

64-bit
Words

» Addresses specify
locations of bytes in memory

= Address of word
= address of first byte in word

= Addresses of successive words
differ by word size (in bytes):
e.qg., 4 (32-bit) or 8 (64-bit)

= Address of wordO, 1, ... 10?

Addr

?7?

32-bit
Words

Addr

?7?

Addr

?7?

Addr

?7?

Addr

?7?

Addr

?7?

Addr.
(hex)

Ox00
Ox01
0x02
Ox03
0x04
0x05
Ox06
Ox07
Ox08
0Ox09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

CSE351, Autumn 2016

18

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Word-Oriented Memory Organization

» Addresses still specify
locations of bytes in memory

= Address of word
= address of first byte in word

= Addresses of successive words
differ by word size (in bytes):
e.qg., 4 (32-bit) or 8 (64-bit)

= Address of wordO, 1, ... 10?
= Alignment

64-bit
Words

Addr

0000

Addr

0008

32-bit
Words

Addr

0000

Addr

0004

Addr

0008

Addr

0012

Bytes

Addr.
(hex)

Ox00
Ox01
0x02
Ox03
0x04
0x05
Ox06
Ox07
Ox08
0Ox09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

CSE351, Autumn 2016

19

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

A Picture of Memory (64-bit view)

+ A “64-bit (8-byte) word-aligned” view of memory:

" In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one Word
I

= A 64-bit pointer I \
WI” fl t on one row Ox00 Ox01 Ox02 O0x03 O0x04 Ox05 Ox06 O0x07
V1 ¥ 1 V1 ¥ ¢ 1 ¥

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

20

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

A Picture of Memory (64-bit view)

+ A “64-bit (8-byte) word-aligned” view of memory:

" In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one Word
I

= A 64-bit pointer I \
WI” fl t on one row Ox00 Ox01 Ox02 O0x03 O0x04 Ox05 Ox06 O0x07
V1 ¥ 1 V1 ¥ ¢ 1 ¥

Address
¥ | 0x00
0x08
0x10
Ox18
0x20
0x28
0x30
Ox38
0x40
0x48

~

I
]
I
I
I
I
I I
I I
l I
0x08 0x09 OxOA 0x0B 0xDC OxOD OxOE OxOF
I l
i I
i]
I I
i I
i]
I I
i I

21

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

. 64-bit example
Addresses and Pointers (pointers are 64-bitspwide>

+» An address is a location in memory
+» A pointer is a data object that holds an address

= Address can point to any data

Address

+» Value 351 stored at I A A B 0x00

address 0x08 ~»00:00:00:00;00:00:01;5F|0x08

R 0x10

" 351,5=15F4 |1 r Ox13

= 0x 00 00 01 5F R 0x20

« Pointer stored at ; gigg
\ N NN U S S —

Ox38 points to 00:00:00:00:00:00:00:08| 0x38

R 0x40

address 0x08 — T T T ox4s

22

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

. 64-bit example
Addresses and Pointers (poimers'are)6(4-bitspwide>

+» An address is a location in memory
+» A pointer is a data object that holds an address

= Address can point to any data

Address
+ Pointer stored at R 0x00
0x48 points to ~»00:00:00:00:00:00:01;5F | 0x08
R 0x10
address 0x38 T T oxas
" Pointer to a pointer! I R T S N N gxgg
N T T R A X
« |s the data stored P11 1 1 1 1 0x30
\ I S S U S —
at 0x08 a pointer? *00:00}00}00}00;00:00;08] 0x38
. IR 0x40
" Could be, depending “~~00700:00:0000:0000: 38| 0x48

on how you use it

23

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Data Representations

+ Sizes of data types (in bytes)

CSE351, Autumn 2016

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short Int 2 2
int int 4 4
float float 4 4
fong Int 4 8
double double 8 8
fong fong 8 8
flong double 8 16

To use “bool” in C, you must #1nclude <stdbool.h>

[address size = word size

24

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

More on Memory Alignment in x86-64

+» For good memory system performance, Intel
recommends data be aligned

"= However the x86-64 hardware will work correctly regardless
of alignment of data

"= Design choice: x86-64 instructions are variable bytes long

+» Aligned: Primitive object of K bytes must have an
address that is a multiple of K

= More about alignment later in the course

1 char

2 short

4 int, float

8 long, double, pointers

25

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Byte Ordering

+» How should bytes within a word be ordered in
memory?

= Example: store the 4-byte (32-bit) 1nt:
Ox al b2 c3 d4
+» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

= Based on Gulliver’s Travels: tribes cut eggs on different
sides (big, little)

26

YA/ UNIVERSITY of WASHINGTON

Byte Ordering

LO2: Memory & Data |

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address

+ Little-endian (x86, x86-64)

" |east significant byte has lowest address

% Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+» Example: 4-byte data Oxal

0x100

CSE351, Autumn 2016

n2c3d4 at address 0x100

0x101 0x102 O0x103

Big Endian

al

b2

c3

d4

O0x100 Ox101 O0x102 0x103

Little Endian

d4

c3

b2

al

27

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Decimal: 12345
Binary: 0011 0000 0011 1001

Byte Ordering Examples |... 3 0 3 9

IA32, x86-64 SPARC

(little endian) (big endian)
InNt X = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01

0x02
0x03

0x02
0x03

32-bit 64-bit

long int y = 12345; IA32 x86-64 SPARC SPARC
// or y = 0x3039; 0x00) 39 [=—| 39 | 0x00 oxo00| 00 00 |ox00
0x01 30 [=—{ 30 |0x01 ox01| 0O 00 |ox01

0x02| 00 [—| 00 | 0x02 ox02]| 30 00 |ox02

0x03[00 f—| 00 | 0x03 ox03[39 00 |oxo3

(A long Intis 88 0x04 00 |ox04
: 0x05 00 |0x05

the size of a word) 50 or0c o
00 |oxo07 39 |0x07

28

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Endianness

+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior
(software)
+» Endianness still shows up:

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store INt, access byte as a char)

= When running down memory errors, need to know exact
values

" Manual translation to and from machine code (in 351)

29

WA UNIVERSITY of WASHINGTON L02: Memory & Data |

Reading Byte-Reversed Listings

Disassembly 32-bit example

= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition
8048366: 81c¢c3ab 120000 add SOx12ab,%ebx

Deciphering numbers

30

CSE351, Autumn 2016

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Reading Byte-Reversed Listings

. Disassembly 32-bit example

= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

» Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition
8048366: 81 c3 ab 120000 add SO0x12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 00 00 12 ab

m Reverse (little-endian): ab 12 00 00

31

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Peer Instruction Question:

«» We store the value Ox 00 01 02 03 as a word at

address 0x100 and then get back OX00 when we read
a byte at address 0x102

+» What machine setup are we using?

Le
3

2
(oo@ (6003 (06\ 00
02 52 o1
loolo 1| le2[o] l02]02
00 /o
00
00

= \/ote at http://PollEv.com/justinh

Lﬁ“e Rig
64 32

R:
“
lw@
(o{_%T

0)

J
106
0 |
0
03

o(/\l\/ i s
one has
O%0b &t
AodresS

Ox 102

(A)
(B) 32-bit, little-endian

(© A\

(D) 64-bit, little-endian

CSE351, Autumn 2016

32

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Autumn 2016

Summary

+» Memory is a long, byte-addressed array
" Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

" Object of K bytes is aligned if it has an address that is a
multiple of K
+ |EC prefixes refer to powers of 21°
+ Pointers are data objects that holds addresses

+» Endianness determines storage order for multi-byte
objects

33

