DECIMAL, BINARY, AND HEXADECIMAL

Decimal Numbering System

Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Represent larger numbers as a sequence of digits

- Each digit is one of the available symbols

Example: 7061 in decimal (base 10)

- $7061_{10}=\left(7 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(1 \times 10^{0}\right)$

Octal Numbering System

Eight symbols: : 0, 1, 2, 3, 4, 5, 6, 7

- Notice that we no longer use 8 or 9

Base Comparison:
Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12... Base 8: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14...

Example: What is 15_{8} in base 10 ?

- $15_{8}=\left(1 \times 8^{1}\right)+\left(5 \times 8^{0}\right)=13_{10}$

Example: What is 7061_{8} in base 10 ?

- $7061_{8}=\left(7 \times 8^{3}\right)+\left(0 \times 8^{2}\right)+\left(6 \times 8^{1}\right)+\left(1 \times 8^{0}\right)=3633_{10}$

Question

What is 34_{8} in base $10 ?$
(A) 32_{10}
(B) 34_{10}
(C) 7_{10}
(D) 28_{10}
(E) 35_{10}

Binary Numbering System

Binary is base 2

- Symbols: 0,1

Convention: $2_{10}=10_{2}=0 \mathrm{~b} 10$

Base 10	Base 8	Base 2
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	10	1000
9	11	1001

Example: What is Ob110 in base 10?

- $0 b 110=110_{2}=\left(1 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+\left(0 \times 1^{0}\right)=6_{10}$

Hexadecimal Number System

Hexadecimal is base 16 (>10)

- Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Convention: $16_{10}=10_{16}=0 \times 10$

Example: What is $0 \times \mathrm{A} 5$ in base 10 ?

- $0 \times A 5=A 5_{16}=\left(10 \times 16{ }^{1}\right)+\left(5 \times 16^{0}\right)=165_{10}$

Question

Which of the following orderings is correct?
(A) $0 x C<0 b 1010<11$
(B) $0 x C<11<0 b 1010$
(C) $11<0 b 1010<0 x C$
(D) $0 b 1010<11<0 x C$
(E) $0 b 1010<0 x C<11$

BASE CONVERSION

Converting to Base 10

Can convert from any base to base 10

$$
\begin{array}{ll}
- & 110_{2}= \\
\cdot & \left(1 \times 2^{2}\right)+\left(1 \times 22^{\prime}\right)+\left(0 \times 1^{1}\right)=6_{10} \\
\left(10 \times 16^{\prime}\right)+\left(5 \times 16^{\prime}\right)=165_{10}
\end{array}
$$

We learned to think in base 10, so this is fairly natural for us

Challenge: Convert into other bases (e.g. 2, 16)

Challenge Question

Convert 13_{10} to binary

Hints:

- $2^{3}=8$
- $2^{2}=4$
- $2^{1}=2$
- $2^{0}=1$

Converting from Decimal to Binary

Given a decimal number N :

- List increasing powers of 2 from right to left until $\geq \mathrm{N}$
- From left to right, ask is that (power of 2) $\leq \mathrm{N}$?
- If YES, put a 1 below and subtract that power from N
- If NO, put a 0 below and keep going

Example for 13 :

$2^{4}=16$	$2^{3}=8$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$
0	1	1	0	1

Converting from Decimal to Base B

Given a decimal number N :

- List increasing powers of B from right to left until $\geq \mathrm{N}$
- From left to right, ask is that (power of B) $\leq \mathrm{N}$?
- If YES, put how many of that power go into N and subtract from N
- If NO, put a 0 and keep going

Example for 1,55 into hexadecimal (base 16):

| 5 |
| :---: | :---: | :---: | :---: |
| 0 | | $16^{2}=256$ | $16^{1}=16$ |
| :---: | :---: |
| 0 | $\mathrm{~A}(10)$ |

Converting Binary \leftrightarrow Hexadecimal

Hex \rightarrow Binary

- Substitute hex digits, then drop leading zeros
- Example: 0x2D in binary
- 0x2 is 0b0010, 0xD is 0b1101
- Drop two leading zeros, answer is 0b101101

Binary \rightarrow Hex

- Pad with leading zeros until multiple of 4 , then substitute groups of 4
- Example: Ob101101
- Pad to Ob 00101101
- Substitute to get 0x2D

Base 10	Base 16	Base 2
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Binary \rightarrow Hex Practice

Convert Ob100110110101101

- How many digits? 15
- Pad: Ob 0100110110101101
- Substitute: 0x4DAD

Base 10	Base 16	Base 2
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	B	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Why are we learning this?

Why does all of this matter?

- Humans think about numbers in base 10 but computers think about numbers in base 2
- How is it that computers can do all of the amazing things that they do?
- Binary encoding

BINARY ENCODING

Numerical Encoding

AMAZING FACT: You can represent anything

 countable using numbers!- Need to agree on an encoding
- Kind of like learning a new language

Examples:

- Decimal Numbers: $0 \rightarrow 0 \mathrm{b0}, 1 \rightarrow 0 \mathrm{~b} 1,2 \rightarrow 0 \mathrm{~b} 10$, etc.
- English Letters: BJC $\rightarrow 0 \times 424 A 43$, yay $\rightarrow 0 x 796179$

Binary Encoding

With N binary digits, how many things can you represent? 2^{N}

- Need N bits to represent n things, where $2^{\mathrm{N}} \geq n$
- Example: 5 bits for alphabet because $2^{5}=32>26$

A binary digit is known as a bit
A group of 4 bits (1 hex digit) is called a nibble
A group of 8 bits (2 hex digits) is called a byte
bit $\rightarrow 2$ things, nibble $\rightarrow 16$ things, byte $\rightarrow 256$ things

So What's It Mean?

Consider the hex sequence 0x4E6F21
Common interpretations include:

- The decimal number 5140257
- The characters "No!"
- The background color of this slide
- The real number 7.203034×10^{-39} [floating point]

It is up to the program/programmer to decide how to interpret the sequence of bits

Summary

Humans think about numbers in decimal; computers think about numbers in binary

- Base conversion to go between
- Hex is more human-readable than binary

All information on a computer is in binary

- Nice because big difference between "high" and "low"

Binary encoding can represent anything!

- Program needs to know how to interpret bits

Summary

> THERE ARE 10 TVPES OF
> PEOPIE IN THE WORLD, THOSE WHO UNDERSTAND BINARY AND THOSE WHO DONTT....

