DECIMAL, BINARY, AND HEXADECIMAL

Decimal Numbering System

Ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Represent larger numbers as a sequence of digits

• Each digit is one of the available symbols

Example: 7061 in decimal (base 10)

• $7061_{10} = (7 \times 10^3) + (0 \times 10^2) + (6 \times 10^1) + (1 \times 10^0)^3$

Octal Numbering System

Eight symbols:: 0, 1, 2, 3, 4, 5, 6, 7

• Notice that we no longer use 8 or 9

Base Comparison:

Base 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12... Base 8: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14...

Example: What is 15₈ in base 10?

•
$$15_8 = (1 \times 8^1) + (5 \times 8^0) = 13_{10}$$

Example: What is 7061₈ in base 10?

• $7061_8 = (7 \times 8^3) + (0 \times 8^2) + (6 \times 8^1) + (1 \times 8^0) = 3633_{10}$

Question

What is 34₈ in base 10?

(A) 32_{10} (B) 34_{10} (C) 7_{10} (D) 28_{10} (E) 35_{10}

Binary Numbering System

Binary is base 2

• Symbols: 0, 1

Convention: $2_{10} = 10_2 = 0b10$

Base 10	Base 8	Base 2
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	10	1000
9	11	1001

Example: What is 0b110 in base 10?

• $0b110 = 110_2$ = $(1 \times 2^2) + (1 \times 2^1) + (0 \times 1^0) = 6_{10}$

Hexadecimal Number System

Hexadecimal is base 16 (>10)

• Symbols? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Convention: $16_{10} = 10_{16} = 0 \times 10$

Example: What is 0xA5 in base 10?

• $0xA5 = A5_{16} = (10 \times 16^{1}) + (5 \times 16^{0}) = 165_{10}$

Which of the following orderings is correct?

(A) 0xC < 0b1010 < 11
(B) 0xC < 11 < 0b1010
(C) 11 < 0b1010 < 0xC
(D) 0b1010 < 11 < 0xC
(E) 0b1010 < 0xC < 11

BASE CONVERSION

Converting to Base 10

Can convert from any base to base 10

- $110_2 = (1 \times 2^2) + (1 \times 2^1) + (0 \times 1^0) = 6_{10}$
- $0xA5 = A5_{16} = (10 \times 16^{1}) + (5 \times 16^{0}) = 165_{10}$

We learned to think in base 10, so this is fairly natural for us

Challenge: Convert into other bases (e.g. 2, 16)

Challenge Question

Convert 13₁₀ to binary

Hints:

- $2^3 = 8$
- $2^2 = 4$
- $2^1 = 2$
- $2^0 = 1$

Converting from Decimal to Binary

Given a decimal number N:

- List increasing powers of 2 from right to left until \ge N
- From left to right, ask is that (power of 2) \leq N?
 - If **YES**, put a 1 below and subtract that power from N
 - If **NO**, put a 0 below and keep going

24=16	2 ³ =8	2 ² =4	2 ¹ =2	2 ⁰ =1
0	1	1	0	1

Converting from Decimal to Base B

Given a decimal number N:

- List increasing powers of B from right to left until $\geq N$
- From left to right, ask is that (power of B) \leq N?
 - If YES, put how many of that power go into N and subtract from N
 - If **NO**, put a 0 and keep going

Example for 155 into hexadecimal (base 16):

16 ² =256	16 ¹ =16	16 ⁰ =1
0	A (10)	5

Converting Binary ↔ Hexadecimal

$Hex \rightarrow Binary$

- Substitute hex digits, then drop leading zeros
- Example: 0x2D in binary
 - 0x2 is 0b0010, 0xD is 0b1101
 - Drop two leading zeros, answer is 0b101101

Binary \rightarrow Hex

- Pad with leading zeros until multiple of 4, then substitute groups of 4
- Example: 0b101101
 - Pad to 0b 0010 1101
 - Substitute to get 0x2D

Base 10	Base 16	Base 2
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

Binary → Hex Practice

Convert 0b100110110101101

- How many digits? 15
- Pad: 0b 0100 1101 1010 1101
- Substitute: 0x4DAD

Base 10	Base 16	Base 2
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

Why are we learning this?

Why does all of this matter?

- Humans think about numbers in base 10 but computers think about numbers in base 2
- How is it that computers can do all of the amazing things that they do?
 - Binary encoding

BINARY ENCODING

Numerical Encoding

AMAZING FACT: You can represent *anything* countable using numbers!

- Need to agree on an encoding
- Kind of like learning a new language

Examples:

- Decimal Numbers: $0 \rightarrow 0b0$, $1 \rightarrow 0b1$, $2 \rightarrow 0b10$, etc.
- English Letters: BJC→0x424A43, yay→0x796179
- Emoticons: 😂 0x0, 😂 0x1, 🔄 0x2, 😳 0x3, 😇 0x4, 🔯 0x5

Binary Encoding

With N binary digits, how many things can you represent? 2^{N}

- Need N bits to represent n things, where $2^{N} \ge n$
- <u>Example</u>: 5 bits for alphabet because $2^5 = 32 > 26$

A binary digit is known as a bitA group of 4 bits (1 hex digit) is called a nibbleA group of 8 bits (2 hex digits) is called a byte

bit \rightarrow 2 things, nibble \rightarrow 16 things, byte \rightarrow 256 things

So What's It Mean?

A sequence of bits can have many meanings! Consider the hex sequence 0x4E6F21 Common interpretations include:

- The decimal number 5140257
- The characters "No!"
- The background color of this slide
- The real number 7.203034 x 10⁻³⁹ [floating point]

It is up to the program/programmer to decide how to interpret the sequence of bits

Summary

Humans think about numbers in decimal; computers think about numbers in binary

- Base conversion to go between
- Hex is more human-readable than binary

All information on a computer is in binary

• Nice because big difference between "high" and "low"

Binary encoding can represent *anything*!

• Program needs to know how to interpret bits

Summary

