University of Washington — Computer Science & Engineering
Autumn 2016 Instructor: Justin Hsia 2016-11-02

CSE351 MIDTERM A

Last Name:

First Name:

Student ID Number:

. . Chris . . Suraj .
Section you attend (circle): | vy ~ John Kevin Sachin il Thomas Xi

Name of person to your Left | Right

All work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in
CSE351 who haven't taken it yet. (please sign)

Do not turn the page until 11:30.

Instructions

e This exam contains 10 pages, including this cover page. Show scratch work for partial
credit, but put your final answers in the boxes and blanks provided.

o The last page is a reference sheet. Feel free to detach it from the rest of the exam.

e The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are
allowed one page (US letter, double-sided) of handwritten notes.

e Please silence and put away all cell phones and other mobile or noise-making devices.
Remove all hats, headphones, and watches.

e You have 50 minutes to complete this exam.

Advice
o Read questions carefully before starting. Skip questions that are taking a long time.
o Read all questions first and start where you feel the most confident.

e Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 12 12 8 11 12 55

Question 1: Number Representation [12 pts]

(A) What is the value of the char 0b 1101 1101 in decimal? [1 pt]

(B) What is the value of char z = (OxB << 7) in decimal? [1 pt|

(C) Let char x = O0xCO. Give one value (in hex) for char y that results in both signed and
unsigned overflow for X+y. [2 pt]

For the rest of this problem we are working with a floating point representation that follows the

same conventions as IEEE 754 except using 8 bits split into the following vector widths:

‘ Sign (1) ‘ Exponent (3) | Mantissa (4) ‘

(D) What is the magnitude of the bias of this new representation? [2 pt|

(E) Translate the floating point number Ob 1110 1010 into decimal. |3 pt]

(F) What is the smallest positive integer that can’t be represented in this floating point
encoding scheme? Hint: For what integer will the “one’s digit” get rounded off? [3 pt]

Question 2: Pointers & Memory [12 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The initial state of

memory (values in hex) is shown below:

Word
Addr +0|+1 | +2|+3|[+4 |+5]|+6 | +7

Ox00 (AC|AB|03|01|BA|[5E|BA |11
Ox08 |[(5E |00 |AB|OC|BE|[A7|CE|FA
o Ox10 (1D |BO |99 |DE|AD |60 |BB |40
char* cp = 0x12

short* sp = 0x0C Ox18 (14 |CD|FA|1D|(DO |41 |ED |77
unsigned* up = 0x2C Ox20 |BA|BO|FF|20|80|AA|BE|EF

(A) What are the values (in hex) stored in each register shown after the following x86

instructions are executed? Remember to use the appropriate bit widths. [6 pt]

Register Value (hex)
%rdi 0Ox0000 0000 0000 0004
%rsi 0x0000 0000 0000 0000
leaw (%rsi, %rdi), %ax Y%ax
movb 8(%rdi), %bl %bl
movswl (,%rdi,8), %ecx %rcx

(B) It’s a memory scavenger hunt! Complete the C code below to fulfill the behaviors

described in the comments using pointer arithmetic. [6 pt]

long vl = (long) *(cp +); // set vl = 0x60
unsigned* v2 = up + ; // set v2 = 64
long v3 = *(long *)(sp +); // set v3 = OxBO1DFACE

Question 3: Computer Architecture Design [8 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) Why can’t we upgrade to more registers like we can with memory? [2 pt|

(B) Why don’t we see new assembly instruction sets as frequently as we see new programming
languages? |2 pt]

(C) Name one reason why a program written in a CISC language might run slower than the

same program written in a RISC language and one reason why the reverse might be true:
[4 pt]

CISC slower: RISC slower:

Question 4: C & Assembly [11 pts|

We are writing the function toLower, which takes a char pointer and converts a string of
letters (assume only letters and spaces) to lowercase, leaving spaces as spaces. Example: If the
pointer p points to “TeST oNe”, then after toLower(p), p now points to “test one”.

ASCII “A” A Space

Binary | Ob 0100 0001 | Ob 0101 1010 | Ob 0010 0000
Binary | Ob 0110 0001 | Ob 0111 1010 | Ob 0010 0000
ASCII ‘a z

Space

(A) Using the table of ASCII values (in binary) above, complete the function using a bitwise
operator: |2 pt|

void toLower (char * p) {
while(*p 1= 0) {

*p = ;
p++;

}

}

(B) Fill in the blanks in the x86-64 code below with the correct instructions and operands.
Remember to use the proper size suffizes and correctly-sized register names! You may

assume that Lines 4, 7, and 8 are correctly filled in. [9 pt]

toLower(char®*):

1 movzbqg , %rax # get *p

2 , # conditional

3 # conditional jump
-Loop:

4 <<answer to part (A)>> # to lowercase

5 movb %al, # update char in memory

6 , wrdi # Increment p

7 <<same as Line 1>> # get new *p

8 <<same as Line 2>> # conditional

9 -Loop # conditional jump
-Exit

10 # return

Question 5: The Stack [12 pts]

The recursive factorial function fact() and its x86-64 disassembly is shown below:

int fact(int n) {
iT(n==0 || n==1)
return 1;

return n*fact(n-1);

000000000040052d <fact>:
40052d: 83 ff 00 cmpl $0, %edi
400530: 74 05 je 400537 <fact+Oxa>
400532: 83 ff 01 cmpl $1, %edi
400535: 75 07 jne 40053e <fact+0x11>
400537: b8 01 00 00 00 movl $1, %eax
40053c: eb Od Jjmp 40054b <fact+0xle>
40053e: 57 pushg %rdi
40053f: 83 ef 01 subl $1, %edi
400542: e8 e6 ff ff ff call 40052d <fact>
400547: 5F popg %rdi
400548: Of af c7 imull %edi, %eax
40054b: 3 c3 rep ret

(A) Circle one: [1 pt] Fact() is saving %rdi to the Stack as a Caller // Callee

(B) How much space (in bytes) does this function take up in our final executable? |2 pt|

(C) Stack overflow is when the stack exceeds its limits (i.e. runs into the Heap). Provide an

argument to Fact(n) here that will cause stack overflow. |2 pt|

«Problem continued on next page»

(D) If we use the main function shown below, answer the following for the execution of the
entire program: [4 pt|

void main() {
printf(“result = %d\n”,fact(3));

}

Total frames Maximum stack

created: frame depth:

(E) In the situation described above where main() calls fFact(3), we find that the word 0x2
is stored on the Stack at address OX7FFFdc7ba888. At what address on the Stack can
we find the return address to main()? |3 pt]

This page purposely left blank

CSE 351 Reference Sheet

Binary Decimal Hex 20 (212223 | 24| 25| 26 27 28 29 210
0000 0 0
0001 1 1 112|148 (16|32|64 (128 (256|512 (1024
0010 2 2
0011 3 3 IEEE 754 FLOATING-POINT
0100 2 a STANDARD IEEE 754 Symbols
oL01 5 s Value: +1 x Mantissa x 2Exponent Exponent | Fraction Object
0110 c c Bit Fields: (-1)5 x 1.M x 2(E+bias) _ 0 [0 +0
here Sinple Precision Biagw-127 0 #0 + Denorm
0111 7 - where Single Precision Bias =-127, AR T e TN
Double Precision Bias =-1023. e Al anyung i s N um,
1000 8 8 MAX 0 oo
1001 9 9 IEEE Single Precision and MAX | #0 NaN
1010 10 A Double Precision Formats: S.P. MAX =255, D.P. MAX = 2047
1011 11 B 3130 2322 0
1100 12 C 1s] E [M |
1101 13 D 15??2 8 bits oo 23 bits o
1110 14 E |SI E I M |
1111 15 F " < -
1 bit 11 bits 52 bits

Assembly Instructions

mov a, b Copy from ato b.
movs a, b Copy from a to b with sign extension.
movz a, b Copy from a to b with zero extension.
lea a, b Compute address and store in b.
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.
push src Push src onto the stack and decrement stack pointer.
pop dst Pop from the stack into dst and increment stack pointer.

call <func> Ppush return address onto stack and jump to a procedure.

ret Pop return address and jump there.

add a, b Add from a to b and store in b (and sets flags).

imul a, b Multiply a and b and store in b (and sets flags).

and a, b Bitwise AND of a and b, store in b (and sets flags).

sar a, b Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

shr a, b Shift value of b right (logical) by a bits, store in b (and sets flags).

shl a, b Shift value of b left by a bits, store in b (and sets flags).

cmp a, b Compare b with a (compute b-a and set condition codes based on result).
test a, b Bitwise AND of a and b and set condition codes based on result.

Jmp <label> unconditional jump to address.
Jj* <label> Conditional jump based on condition codes (more on next page).

set* a Set byte based on condition codes.

Conditionals

Instruction cmp b, a test a, b

je “Equal” == a&b=0
jne “Not equal” 1= aé&bl!=0
Jjs “Sign” (negative) a&b< 0
jns (non-negative) a&b>=0
Jg “Greater” a> b a&b>0
joe “Greater or equal” a>=>b a&b>=0
jl “Less” a< b a&b< O
jle “Less or equal” a<=b»b a&b<=0
ja “Above” (unsigned >) a> b

jb “Below” (unsigned >) a< b

Registers

Name of “virtual” register

Name Convention h°.:"y$§‘§ ;oﬁ';',te:: L%‘;,vt?t
%rax | Returnvalue—Callersaved | %eax %ax %al
%rbx Callee saved = %ebx %bx %bl
%rcx | Argument #4 — Caller saved | %ecx %cX %cl
%rdx | Argument #3 —Callersaved | %edx %dx %dl
%rsi | Argument #2—Callersaved | %esi %si %sil
%rdi | Argument #1—Callersaved | %edi %di %dil
%rsp Stack Pointer %esp %sp %spl
%rbp Callee saved | %ebp %bp %bpll
%r8 | Argument #5—Callersaved | %r8d %r8w %r8b
%r9 | Argument #6 —Callersaved | %r9d %r9w %rob
%r10 Caller saved | %r10d %ri1Ow %ri10b
%ril Caller saved | %rlld %rllw %rillb
%ri2 Callee saved # %rl2d %ril2w %ril2b
%ril3 Callee saved | %rl3d %ri3w %rl13b
%ri4 Callee saved | %rl4d %rldw %rl4b
%rl15 Callee saved | %rl5d %ril5w %ril15b

Sizes
x86-64 Size
C type suffix (bytes)
char b 1
short W 2
int | 4
long q 8

	CSE351-Au16-Midterm_A.pdf
	ref-mt.pdf

