

University of Washington – Computer Science & Engineering

Autumn 2016 Instructor: Justin Hsia 2016-11-02

Last Name: Perfect

First Name: Perry

Student ID Number: 1234567

Section you attend (circle): Chris
Yufang John Kevin Sachin

Suraj
Waylon Thomas Xi

Name of person to your Left | Right Samantha Student Larry Learner
All work is my own. I had no prior knowledge of the exam

contents nor will I share the contents with others in
CSE351 who haven’t taken it yet. (please sign)

Do not turn the page until 11:30.
Instructions

 This exam contains 10 pages, including this cover page. Show scratch work for partial

credit, but put your final answers in the boxes and blanks provided.

 The last page is a reference sheet. Feel free to detach it from the rest of the exam.

 The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are

allowed one page (US letter, double-sided) of handwritten notes.

 Please silence and put away all cell phones and other mobile or noise-making devices.

Remove all hats, headphones, and watches.

 You have 50 minutes to complete this exam.

Advice
 Read questions carefully before starting. Skip questions that are taking a long time.

 Read all questions first and start where you feel the most confident.

 Relax. You are here to learn.

Question 1 2 3 4 5 Total

Possible Points 12 12 8 11 12 55

2

Question 1: Number Representation [12 pts]

(A) What is the value of the char 0b 1101 1101 in decimal? [1 pt]

If x = 0xDD, –x = 0x23 = 25+3 = 35
Also accepted unsigned: 0xDD = (16+1)*13 = 221

-35 or 221

(B) What is the value of char z = (0xB << 7) in decimal? [1 pt]

0xB << 7 = 0b 1000 0000 = TMinchar = -128
Also accepted unsigned: 0x80 = 128

-128 or 128

(C) Let char x = 0xC0. Give one value (in hex) for char y that results in both signed and

unsigned overflow for x+y. [2 pt]

x<0, so need large enough (in magnitude) neg num for signed
overflow. Unsigned overflow comes naturally along with this.

0x80 ൑ y ൑ 0xBF

For the rest of this problem we are working with a floating point representation that follows the

same conventions as IEEE 754 except using 8 bits split into the following vector widths:

Sign (1) Exponent (3) Mantissa (4)

(D) What is the magnitude of the bias of this new representation? [2 pt]

Bias = െሺ2ଷିଵ െ 1ሻ ൌ െ3 3

(E) Translate the floating point number 0b 1110 1010 into decimal. [3 pt]

-13

 S = 1, E = 1102, M = 10102. Notice that E indicates this is not a special case.

 Exp = 6 + (-3) = 3, Man = 1.1012.

 ሺെ1ሻଵ ൈ 1.101ଶ ൈ 2ଷ ൌ െ1101ଶ ൌ െሺ8 ൅ 4 ൅ 1ሻ ൌ െ13.

(F) What is the smallest positive integer that can’t be represented in this floating point

encoding scheme? Hint: For what integer will the “one’s digit” get rounded off? [3 pt]

Max norm number = 1.1111 ൈ 2଺ିଷ ൌ 15.5, so 16. 16 or 33

Based on hint: Look for number such that the 20=1 bit is just off the end of the

mantissa, so of the form 1.00001ൈ 2୉୶୮, with the underlined bit being 2଴.

 Counting to the left, we find that Exp = 5, and 1.00001 ൈ 2ହ ൌ 33.

SID: 1234567

3

Question 2: Pointers & Memory [12 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The initial state of

memory (values in hex) is shown below:

char* cp = 0x12
short* sp = 0x0C
unsigned* up = 0x2C

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 AC AB 03 01 BA 5E BA 11

0x08 5E 00 AB 0C BE A7 CE FA

0x10 1D B0 99 DE AD 60 BB 40

0x18 14 CD FA 1D D0 41 ED 77

0x20 BA B0 FF 20 80 AA BE EF

(A) What are the values (in hex) stored in each register shown after the following x86

instructions are executed? Remember to use the appropriate bit widths. [6 pt]

 Register Value (hex)

 %rdi 0x0000 0000 0000 0004

 %rsi 0x0000 0000 0000 0000

leaw (%rsi, %rdi), %ax %ax 0x0004

movb 8(%rdi), %bl %bl 0xBE

movswl (,%rdi,8), %ecx %rcx 0x0000 0000 FFFF B0BA

 movb instruction pulls byte from memory at address 8+4 = 12 = 0x0C.

 movswl instruction pulls 2 bytes from memory starting at addresses 8*4 = 32 = 0x20.

 Remember little-endian! Then sign extended to 32 bits, zero out top 32 bits.

(B) It’s a memory scavenger hunt! Complete the C code below to fulfill the behaviors

described in the comments using pointer arithmetic. [6 pt]

 v1: Byte 0x60 is at address 0x15. 0x15 – cp = 3.

 v2: No dereferencing, just pointer arithmetic (scaled by sizeof(unsigned)=4).

 up = 0x2C = 44. To get to 64, need to add 20 (5 by pointer arithmetic).

 v3: The correct bytes can be found (in little-endian order) in addresses 0x0E-0x11.

 Want (0x0E – sp)/sizeof(short) = 1.

long v1 = (long) *(cp + __3__); // set v1 = 0x60

unsigned* v2 = up + __5__; // set v2 = 64

long v3 = *(long *)(sp + __1__); // set v3 = 0xB01DFACE

4

Question 3: Computer Architecture Design [8 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) Why can’t we upgrade to more registers like we can with memory? [2 pt]

Registers are part of the CPU (and the architecture) and are not modular like RAM.

(B) Why don’t we see new assembly instruction sets as frequently as we see new programming

languages? [2 pt]

Hard to implement/get adopted – need to build new hardware. (by comparison, a new
programming language only needs a new compiler – software)

(C) Name one reason why a program written in a CISC language might run slower than the

same program written in a RISC language and one reason why the reverse might be true:

[4 pt]

CISC slower:
Complicated instructions take longer to
execute (fewer instructions, but each is
slower).

RISC slower:
Need more instructions to do complicated
computations (faster instructions, but
more numerous).

SID: 1234567

5

Question 4: C & Assembly [11 pts]

We are writing the function toLower, which takes a char pointer and converts a string of
letters (assume only letters and spaces) to lowercase, leaving spaces as spaces. Example: If the
pointer p points to “TeST oNe”, then after toLower(p), p now points to “test one”.

ASCII ‘A’ ‘Z’ Space
Binary 0b 0100 0001 0b 0101 1010 0b 0010 0000

Binary 0b 0110 0001 0b 0111 1010 0b 0010 0000

ASCII ‘a’ ‘z’ Space

(A) Using the table of ASCII values (in binary) above, complete the function using a bitwise

operator: [2 pt]

(B) Fill in the blanks in the x86-64 code below with the correct instructions and operands.

Remember to use the proper size suffixes and correctly-sized register names! You may

assume that Lines 4, 7, and 8 are correctly filled in. [9 pt]

void toLower (char * p) {
 while(*p != 0) {

 *p = _*p | 0x20___________;

 p++;
 }
}

 toLower(char*):

 1 movzbq (%rdi), %rax # get *p

 2 testb %al, %al # conditional

 3 je .Exit # conditional jump

 .Loop:

 4 <<answer to part (A)>> # to lowercase

 5 movb %al, (%rdi) # update char in memory

 6 addq $1, %rdi # increment p

 7 <<same as Line 1>> # get new *p

 8 <<same as Line 2>> # conditional

 9 jne .Loop # conditional jump

 .Exit:

10 ret # return

6

Grading Notes for Question 4:

 Line 1: must be dereference, must be 64-bit register name, p is first argument (%rdi).

 Line 2: any width specifier accepted as long as register names match

 (testq/%rax, testl/%eax, testw/%ax).

 Also accepted compq $0, $rax (same idea with width specifiers).

 Line 5: points awarded as long as it matched the Line 1 blank.

 Line 6: must be q width specifier because destination is %rdi.

 Line 9: points awarded as long as it was the opposite of the Line 3 blank.

 Line 10: retq also accepted.

SID: 1234567

7

Question 5: The Stack [12 pts]

The recursive factorial function fact() and its x86-64 disassembly is shown below:

(A) Circle one: [1 pt] fact() is saving %rdi to the Stack as a Caller // Callee

(B) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next
instruction (0x40054d) from 0x40052d.

32 B

(C) Stack overflow is when the stack exceeds its limits (i.e. runs into the Heap). Provide an

argument to fact(n) here that will cause stack overflow. [2 pt]

Any negative int

We did mention in the lecture slides that the Stack has 8 MiB limit in x86-64, so since

16B per stack frame, credit for anything between 219 and TMax (231-1).

int fact(int n) {

 if(n==0 || n==1)

 return 1;

 return n*fact(n-1);

000000000040052d <fact>:

 40052d: 83 ff 00 cmpl $0, %edi

 400530: 74 05 je 400537 <fact+0xa>

 400532: 83 ff 01 cmpl $1, %edi

 400535: 75 07 jne 40053e <fact+0x11>

 400537: b8 01 00 00 00 movl $1, %eax

 40053c: eb 0d jmp 40054b <fact+0x1e>

 40053e: 57 pushq %rdi

 40053f: 83 ef 01 subl $1, %edi

 400542: e8 e6 ff ff ff call 40052d <fact>

 400547: 5f popq %rdi

 400548: 0f af c7 imull %edi, %eax

 40054b: f3 c3 rep ret

8

(D) If we use the main function shown below, answer the following for the execution of the

entire program: [4 pt]

void main() {
 printf(“result = %d\n”,fact(3));
}

Total frames
created: 5

Maximum stack
frame depth: 4

 main → fact(3) → fact(2) → fact(1)

 main → printf

(E) In the situation described above where main() calls fact(3), we find that the word 0x2

is stored on the Stack at address 0x7fffdc7ba888. At what address on the Stack can

we find the return address to main()? [3 pt]

0x7fffdc7ba8a0

 Only %rdi (current n) and return address get pushed onto Stack during fact().

Address Contents

<Rest of Stack>

0x7fffdc7ba8a0 Return addr to main()
0x7fffdc7ba898 Old %rdi (n=3)
0x7fffdc7ba890 Return addr to fact()
0x7fffdc7ba888 Old %rdi (n=2)
0x7fffdc7ba880 Return addr to fact()

