University of Washington — Computer Science & Engineering
2016-12-13

Autumn 2016

Instructor:

Justin Hsia

CSE351 FINAL

Section you attend (circle):

Name of person to your Left | Right

All work is my own. | had no prior knowledge of the exam
contents nor will | share the contents with others in
CSE351 who haven't taken it yet. (please sign)

Instructions

Last Name:
First Name:

Student ID Number:

Chris
Yufang

John

Kevin

Sachin

Suraj

Waylon

Thomas

Xi

Do not turn the page until 12:30.

e This exam contains 14 pages, including this cover page. Show scratch work for partial credit,

but put your final answers in the boxes and blanks provided.

e The last page is a reference sheet. Please detach it from the rest of the exam.

e The exam is closed book (no laptops, tablets, wearable devices, or calculators). You are allowed

two pages (US letter, double-sided) of handwritten notes.

o Please silence and put away all cell phones and other mobile or noise-making devices. Remove

all hats, headphones, and watches.

e You have 110 minutes to complete this exam.

Advice

e Read questions carefully before starting. Skip questions that are taking a long time.

o Read all questions first and start where you feel the most confident.

e Relax. You are here to learn.

Question

Mila

M1b

M2

M3

M4

F5

F6

F7

F8

F9

Total

Possible Points

12

10

10

5

78

Question M1la: Floating Point [3 pts]

(A) What is the decimal value of the Float OXFF8000007? |1 pt|

(B) We are storing scientific data on the order of 2% using 32-bit Floats. What is the minimum
number of these data points, when multiplied together (e.g. a*b*c is 3), that cause underflow

numerical issues? [2 pt]

Question M1b: Number Representation [4 pts]

DNA is comprised of four nucleotides (A, C, G, T — the building blocks of life!). We can convert
data into DNA nucleotide representation using the encoding 002 A, 012C, 102G, 112T. For
example, 0x0 = 00002 = AA.

(C) What is the unsigned decimal value of the DNA encoding TAG? |2 pt]

(D) If we have 256 bytes of binary data that we want to store, how many nucleotides would it take to

store that same data? [2 pt]

Question M2: Pointers & Memory [8 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). Below is the factorial function

disassembly, showing where the code is stored in memory.

000000000040052d <fact>:
40052d: 83 ff 00 cmpl $0, %edi
400530: 74 05 je 400537 <fact+Oxa>
400532: 83 ff 01 cmpl $1, %edi
400535: 75 07 jne 40053e <fact+0x11>
400537: b8 01 00 00 00 movl $1, %eax
40053c: eb 0Od Jmp 40054b <fact+0Oxle>
40053e: 57 pushqg %rdi
40053f: 83 ef 01 subl $1, %edi
400542: €8 e6 ff ff fFf call 40052d <fact>
400547: 5F popq %rdu
400548: Of af c7 imull %edi, %eax
40054b: 3 c3 rep ret

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are

executed? Remember to use the appropriate bit widths. [4 pt]

Register Value (hex)
%rdi 0x0000 0000 0040 052D
%rsi 0x0000 0000 0000 0003
leal (%rdi, %rsi), %eax Y%eax
movb 3(%rdi,%rsi,2), %bl %bl

(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer
arithmetic. Let char* cp = 0x40052D. [4 pt]

char vl *(cp +); // set vl = 0Ox75

int* v2 = (int*)((*cp + 2); // set v2 0x40053D

Question M3: The Stack [12 pts]

The recursive Fibonacci sequence function Fib() and its x86-64 disassembly are shown below:

int fib (int n) {

if (n<2)
return 1;
else
return fib(n-2) + fib(n-1);
}
000000000040055d <Fib>:
40055d: 55 push %rbp
40055e: 53 push %rbx
40055f: 89 fb mov %edi ,%ebx
400561: 83 ff 01 cmp $0x1 ,%edi
400564: 7e 16 jle 40057c <fFib+0Ox1f>
400566: 8d 7f fe lea -0x2(%rdiu) ,%edi
400569: e8 ef ff ff ff callq 40055d <fib>
40056e: 89 cb mov Y%eax ,%ebp
400570: 8d 7b ff lea -0x1(%rbx) ,%edi
400573: e8 e5 ff ff ff callq 40055d <fib>
400578: 01 e8 add %ebp , %eax
40057a: eb 05 Jjmp 400581 <fib+0x24>
40057c: b8 01 00 00 00O mov $0x1 , %eax
400581: 5b pop %rbx
400582: b5d pop %rbp
400583: c3 retq

(A) In no more than a sentence, explain what the instruction at address 0x40055F does (in terms of

the function — don’t be too literal) and why it is necessary. |2 pt]

«Problem continued on next page»

SID:

How much space (in bytes) does this function take up in our final executable? |[1 pt]

Calling Fib(4): How many total Fib stack frames are created? |2 pt|

Calling Fib(4): What is the mazimum amount of memory on the stack (in bytes) used for Fib

stack frames at any given time? [3 pt]

Below is an incomplete snapshot of the stack during the call to Fib(4). Fill in the values of the

four missing intermediate words in hex: [4 pt]

Ox7fffc39h72e8
Ox7FfFfc39b72e0
Ox7Ffffc39b72d8

Ox7fffc39b72d0
Ox7FfFfc39b72c8
Ox7FfFfc39b72c0

Ox7FFfc39b72b8

Ox7FFfc39b72b0
Ox7ffFfc39b72a8

<ret addr to main>

<original rbp>

<original rbx>

Ox1

0x3

Question M4: C & Assembly |[8 pts|

We are writing the recursive function search, which takes a char pointer and returns the address of
the first instance in the string of a specified char c, or the null pointer if not found.
Example: char* p = “TeST oNe”, then search(p, “N”) will return the address p+6.

char *search (char *p, char c¢) {
it (I*p)
return O;
else 1If (*p==c)
return p;
return search(p+1,c);

}

Fill in the blanks in the x86-64 code below with the correct instructions and operands. Remember to

use the proper size suffizes and correctly-sized register names!

search(char*, char):
1 movzbl , %heax # get *p
2 , Yal # conditional
3 -NotFound # conditional jump
4 , %al # conditional
5 # conditional jump
6 $1, # argument setup

recurse
ret

-NotFound:
9 $0, %eax # return value
10 ret

-Found:
11 mov(q , # return value
12 ret

Question F5: Caching [10 pts]

We have 16 KiB of RAM and two options for our cache. Both are two-way set associative with 256 B
blocks, LRU replacement, and write-back policies. Cache A is size 1 KiB and Cache B is size 2 KiB.

(A) Calculate the TIO address breakdown for Cache B: [1.5 pt]

Tag bits Index bits | Offset bits

(B) The code snippet below accesses an integer array. Calculate the Miss Rate for Cache A if it
starts cold. [3 pt]

#define LEAP 4

#define ARRAY_SIZE 512

int nums[ARRAY_SIZE]; // &nums = 0x0100 (physical addr)
for (i = O; i < ARRAY_SIZE; i+=LEAP)

nums[i] = i*i;

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no
change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt]

Direct-mapped Increase block size

Double LEAP

Write-through policy

(D) Assume it takes 200 ns to get a block of data from main memory. Assume Cache A has a hit
time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns. What is

the worst miss rate Cache B can have in order to perform as well as Cache A? |2 pt|

Question F6: Processes [9 pts]

(A) In keeping with the explosive theme of this class, please complete the function below to create a

fork bomb, which continually creates new processes. |2 pt]

void forkbomb(void) {

<« Write within the text box

(B) Why is a fork bomb bad? Briefly explain what will happen to your system when it goes off. [2 pt]

(C) Name the three possible control flow outcomes (i.e. what happens next?) of an exception. [3 pt]

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated during

a context switch. |2 pt]

Page table PTBR TLB Cache

Question F7: Virtual Memory [10 pts|

Our system has the following setup:
o 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages
o A 4-entry TLB that is fully associative with LRU replacement
e A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values: |2 pt]

Page offset width PPN width

Entries in a page table TLBT width

(B) Briefly explain why we make the page size so much larger than a cache block size. |2 pt|

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the

following get updated during a page fault. [2 pt]

TLB Cache

Page table Swap space

(D) The TLB is in the state shown when the following code is executed. Which iteration (value of 1)
will cause the protection fault (segfault)? Assume sum is stored in a register.

Recall: the hex representations for TLBT /PPN are padded as necessary. [4 pt]

long *p = Ox7F0000, sum = O; -
for (int i = 0; 1; i++) { TLBT PPN |Valid|{ R |W]| X
it (i%2) Ox7FO [O0x31| 1 11110
*x»=0; | IanssacieT il Bl el el
else _92(_7!:_2__9)_(]_'§___1____1__9__(_)_
sum += *p; 0x004 |Ox1D| 1 1101
3 s Ox7F1|ox2D| 1 [1[0]0

Question F8: Memory Allocation [9 pts|

(A)

(B)

(©)

Briefly describe one drawback and one benefit to using an implicit free list over an explicit free

list. [4 pt]
Implicit drawback: Implicit benefit:
The table shown to the right shows the value of the header for the N header value
block returned by the request: (int*)malloc(N*sizeof(int)) 6 33
What is the alignment size for this dynamic memory allocator? |2 pt] 8 49
10 49
12 65

Consider the C code shown here. Assume that
the mal loc call succeeds and F0O is stored in
memory (not just in a register). Fill in the
following blanks with “>” or “<” to compare
the values returned by the following expressions
just before return 0. |3 pt]

ZERO &ZERO
foo &foo
foo &str

#include <stdlib.h>
int ZERO = O;
char* str = "cse351";

int main(int argc, char *argv[]) {
int *foo = malloc(8);

free(foo);
return O;

10

Question F9: C and Java [5 pts|

For this question, use the following Java object definition and C struct definition. Assume addresses

are all 64-bits.

public class School { struct School {
long students; long students;
String name; char* name;
String abbrev; char abbrev[5];
float tuition; float tuition;
};

public void cheer() {
System.out.printIn(“Go +name);
}

public class Univ extends School {
String[] majors;
public void cheer() {
System.out.printIn(*“Go ”’+abbrev);
}

}

(A) How much memory, in bytes, does an instance of struct School use? How many of those

bytes are internal fragmentation and ezternal fragmentation? [3 pt]

sizeof(struct School) Internal External

(B) How much longer, in bytes, are the following for Univ than for School? |2 pt]

Instance:

vtable:

11

This page purposely left blank

12

CSE 351 Reference Sheet (Final)

Double Precision Formats:

Assembly Instructions

mov a, b
movs a, b
movz a, b
lea a, b

push src
pop dst
call <func>
ret

add a, b
imul a, b
and
sar
shr
shl
cmp a,
test a, b
jmp <label>
j* <label>
set* a

Ol D
O T T|T T

Copy from ato b.

Binary Decimal Hex 20 (212223 | 24| 25| 26 27 28 29 210
0000 0 0
112|148 |16(32(64]| 128 (256|512 | 1024
0001 1 1
0010 2 2 SI Size Prefix Symbol 1IEC Size Prefix Symbol
0011 3 3 10° Kilo- K 210 Kibi- Ki
0100 4 4 10° Mega- M 220 Mebi- Mi
0101 5 5 107 Giga- G 230 Gibi- Gi
0110 6 6 102 Tera- T 240 Tebi- Ti
0111 7 7 101 Peta- P 250 Pebi- Pi
1000 8) 10:‘:‘3 Exa- E 2:2 Exhli- E%
1001 9 9 1(}24 ;Z,cm— $ 230 f{cl;l.— $1
1010 10 A 10 ofta- 2 obi- i
1011 11 B IEEE 754 FLOATING-POINT
1100 12 ¢ STANDARD IEEE 754 Symbols
1101 13 D Value: +1 x Mantissa x 2Exponent Exponent | Fraction| — Object
1ﬂ2 1: E Bit Fields: (-1)S x 1.M x 2(Esbias) 0 L
where Single Precision Bias =-127, 0 i x(]‘ + Denorm
Double Precision Bias =-1023. I'tlo MAX - 1 |anything & Fl. Pt. Num.
MAX 0 oo
IEEE Single Precision and MAX #0 NaN

S.P. MAX =255, D.P. MAX = 2047

3130 2322 0

sf e | M |
1bit 8 bits 23 bits

63 62 5251 0

sl e | M |
1 bit 11 bits 52 bits

Copy from a to b with sign extension.

Copy from a to b with zero extension.

Compute address and store in b.
Note: the scaling parameter of memory operands can only be 1, 2, 4, or 8.

Push src onto the stack and decrement stack pointer.

Pop from the stack into dst and increment stack pointer.

Push return address onto stack and jump to a procedure.

Pop return address and jump there.
Add from a to b and store in b (and sets flags).

Multiply a and b and store in b (and sets flags).
Bitwise AND of a and b, store in b (and sets flags).
Shift value of b right (arithmetic) by a bits, store in b (and sets flags).

Shift value of b right (logical) by a bits, store in b (and sets flags).
Shift value of b left by a bits, store in b (and sets flags).
Compare b with a (compute b-a and set condition codes based on result).

Bitwise AND of a and b and set condition codes based on result.

Unconditional jump to address.

Conditional jump based on condition codes (more on next page).

Set byte based on condition codes.

Conditionals

Instruction cmp b, a' test a, b
Jje “Equal” a==b a&b==0
jne “Notequal” al=b 'a&b!=0
JS “Sign” (negative) a&b< O
JNS (non-negative) a&b>0
J9 “Greater” a> b a&b>0
Jge “Greater or equal” a>b ra&b>=0
3l “less” a< b a&b< O
Jle “Lessorequal” a<=b 'a&b<=0
Ja “Above” (unsigned>) , a > b
Jb “Below” (unsigned>) ' a < b
Registers
Name of “virtual” register
Lowest Lowest Lowest
Name Convention 4 bytes 2 bytes byte
%rax | Returnvalue —Callersaved | %eax Y%ax %al
%rbx Callee saved | %ebx %bx %bl
%rcx | Argument #4 — Caller saved | %ecx %X %cl
%rdx | Argument #3 —Caller saved | %edx %adx %dl
%rsi | Argument #2 —Callersaved | %esi %si %sil
%rdi | Argument #1—Caller saved | %edi %di %dil
%rsp Stack Pointer = %esp %sp %spl
%rbp Callee saved | %ebp %bp %bpl
%r8 | Argument #5—Callersaved | %r8d %r8w %r8b
%r9 | Argument #6 — Callersaved | %r9d %row %r9b
%r10 Caller saved | %r10d %riOw %rl10b
%ril Callersaved | %rlld %rllw %rllb
%ri2 Calleesaved | %rl2d %ril2w %ri2b
%ri3 Calleesaved | %r13d %ri3w %ri3b
%rl4 Callee saved | %rld4d %rldw %rldb
%rl5 Callee saved | %r15d %ril5w %rl15b

Sizes

x86-64 Size
C type suffix (bytes)

char b 1
short w 2
int 1 4
long q 8
C Functions

void*malloc(size_tsize):
Allocate size bytes from the heap.

void* calloc(size_tn, size_tsize):
Allocate n*size bytes and initialize to 0.

void free(void* ptr):
Free the memory space pointed to by ptr.

size_tsizeof(type):
Returns the size of a given type (in bytes).

char* gets(char* s):
Reads a line from stdin into the buffer.

pid_t fork():
Create a new child process (duplicates parent).

pid_twait(int* status):
Blocks calling process until any child process
exits.

int execv(char* path, char* argv[]):
Replace current process image with new image.

	CSE351-Au16-Final.pdf
	ref-final.pdf

