
CSE 351
Buffer overflows, and lab 3



Buffer overflows

• C performs no bounds-checking on array accesses; this 
makes it fast but also unsafe

– What would we need to add to C to support checked array 
accesses?

• For example: int arr[10]; arr[15] = 3;
– No compiler warning, just memory corruption

• What symptoms are there when programs write past the 
end of arrays?

– Hint: we saw an example of this in lab 0

2/7/13 2



Stack layout

• As we’ve seen previously, when values are 
declared on the stack, the compiler shifts 
%rsp (in x86-64 assembly) to allocate space 
for them

• When a function returns, the return 
instruction pointer indicates where to begin 
executing again

2/7/13 3

Return 
instruction 

pointer

Saved 
registers

int a

int b

uint64_t c

char d[8]

...



Stack layout

• Note that the top of the diagram represents 
higher addresses, and the bottom is lower 
addresses

• To which memory does d[10] refer in this 
example?

2/7/13 4

Return 
instruction 

pointer

Saved 
registers

int a

int b

uint64_t c

char d[8]

...



Buffer overflow attacks

• In buffer overflow attacks, malicious users 
pass values to attempt to overwrite 
important parts of the stack or heap

• For example, an attacker could overwrite 
the return instruction pointer with the 
address of a malicious block of code

2/7/13 5

Return 
instruction 

pointer

Saved 
registers

int a

int b

uint64_t c

char d[8]

...



Buffer overflow attacks

• C has some inherently unsafe functions that facilitate 
buffer overflows, including gets and strcpy

• gets(char* s) reads from standard input until 
reaching a newline character (‘\n’) or EOF (end of file)

– How long should s be to contain the entire input string?

• strcpy(char* dest, const char* src) copies the 
contents of the src string into the dest string

– What happens if dest is smaller than src?

2/7/13 6



Protecting against overflows

• As a programmer, you can protect against buffer 
overflow bugs/attacks by checking buffer lengths and 
using safer string-related functions

– fgets(char* s, int size, FILE* stream) takes a size 
parameter and will only read that many bytes from the 
given input stream

– strncpy(char* dest, const char* src, size_t n) will 
copy at most n bytes from src to dest

2/7/13 7



Protecting against overflows

• Stack canaries
– At runtime, programs place a (pseudo-)random integer on 

the stack immediately before the return instruction 
pointer. If the integer value doesn’t match when the 
function returns, the program generates a segmentation 
fault

• Data execution prevention
– Some parts of memory (notably the stack) are marked as 

non-executable. The CPU will refuse to execute 
instructions from such locations and the program will 
terminate

2/7/13 8



Lab 3: Buffer overflows

• The purpose of lab 3 is to become familiar with how 
buffer overflow attacks work

• The various stages of the lab require different types of 
attacks to achieve certain goals

• If you have become comfortable with GDB and 
understanding assembly instructions, you should have 
no problem

2/7/13 9



Lab 3: Buffer overflows

• The exploitable function in lab 3 is called Gets (capital 

‘G’) and is called from the getbuf function

• getbuf allocates a small array and reads user input 

into it via Gets. If the user input is too long, then 

certain values on the stack within the getbuf function 

will be overwritten...

2/7/13 10



Lab 3: Buffer overflows

• The first thing to do is to become familiar with the 
provided tools for the lab

• To generate malicious strings for testing buffer 
overflows, use the provided sendstring tool. It takes a 
list of space-separated hex values and translates them 
to the corresponding Ascii characters

• Each lab is slightly different as determined by the 
username given to it; when you run the bufbomb 
binary, you have to pass in “-u [UW_NetID]”

2/7/13 11



Level 0: Candle

• In level 0, you are asked to make getbuf() jump to a 
function called smoke() instead of returning normally

• To do this, you will need to write past the end of the 
buffer, and overwrite the return address that was 
pushed onto the stack before getbuf() was called

• Let’s walk through level 0 together

12/9/10 12


	Slide 1
	Buffer overflows
	Stack layout
	Stack layout
	Buffer overflow attacks
	Buffer overflow attacks
	Protecting against overflows
	Protecting against overflows
	Lab 3: Buffer overflows
	Lab 3: Buffer overflows
	Lab 3: Buffer overflows
	Level 0: Candle

