CSE 351

Buffer overflows, and lab 3

Buffer overflows

* C performs no bounds-checking on array accesses; this
makes it fast but also unsafe

- What would we need to add to C to support checked array
accesses?

e For example: int arr[10]; arr[15] = 3;
- No compiler warning, just memory corruption

» What symptoms are there when programs write past the
end of arrays?

- Hint: we saw an example of this in lab O

Stack layout

* As we've seen previously, when values are
declared on the stack, the compiler shifts
%rsp (in x86-64 assembly) to allocate space
for them

* When a function returns, the return
instruction pointer indicates where to begin
executing again

Return
instruction
pointer

Saved
registers

int a

int b

uint64 tc

char d[8]

Stack layout

Return
etructi
* Note that the top of the diagram represents In;;fﬁ\ctel.?n
higher addresses, and the bottom is lower
addresses SEYER
. _ . registers
* To which memory does d[10] refer in this
example? int a
int b
uint64 tc

char d[8]

Buffer overflow attacks

* In buffer overflow attacks, malicious users
pass values to attempt to overwrite
iImportant parts of the stack or heap

* For example, an attacker could overwrite
the return instruction pointer with the
address of a malicious block of code

Return
instruction
pointer

Saved
registers

int a

int b

uint64 tc

char d[8]

Buffer overflow attacks

* C has some inherently unsafe functions that facilitate
buffer overflows, including gets and strcpy
e gets(char* s) reads from standard input until

reaching a newline character (‘\n’) or EOF (end of file)
- How long should s be to contain the entire input string?

strcpy(char dest, const char* src) copies the

contents of the src string into the dest string
- What happens if dest is smaller than src?

Protecting against overflows

* As a programmer, you can protect against buffer
overflow bugs/attacks by checking buffer lengths and

using safer string-related functions
- fgets(char* s, int size, FILE* stream) takes a size
parameter and will only read that many bytes from the
given input stream
- strncpy(char* dest, const char* src, size_t n) will
copy at most n bytes from src to dest

Protecting against overflows

» Stack canaries
- At runtime, programs place a (pseudo-)random integer on
the stack immediately before the return instruction
pointer. If the integer value doesn’t match when the
function returns, the program generates a segmentation
fault

* Data execution prevention
- Some parts of memory (notably the stack) are marked as
non-executable. The CPU will refuse to execute

instructions from such locations and the program will
terminate

Lab 3: Buffer overflows

* The purpose of lab 3 is to become familiar with how
buffer overflow attacks work

* The various stages of the lab require different types of
attacks to achieve certain goals

* If you have become comfortable with GDB and
understanding assembly instructions, you should have
no problem

Lab 3: Buffer overflows

* The exploitable function in lab 3 is called Gets (capital
‘G’) and is called from the getbuf function

* getbuf allocates a small array and reads user input
into it via Gets. If the user input is too long, then

certain values on the stack within the getbuf function
will be overwritten...

Lab 3: Buffer overflows

* The first thing to do is to become familiar with the
provided tools for the lab

* To generate malicious strings for testing buffer
overflows, use the provided sendstring tool. It takes a
list of space-separated hex values and translates them
to the corresponding Ascii characters

* Each lab is slightly different as determined by the
username given to it; when you run the bufbomb
binary, you have to passin “-u [UW_NetID]"

Level 0: Candle

* In level O, you are asked to make getbuf () jump to a
function called smoke() instead of returning normally

* To do this, you will need to write past the end of the
buffer, and overwrite the return address that was
pushed onto the stack before getbuf () was called

* Let’s walk through level O together

	Slide 1
	Buffer overflows
	Stack layout
	Stack layout
	Buffer overflow attacks
	Buffer overflow attacks
	Protecting against overflows
	Protecting against overflows
	Lab 3: Buffer overflows
	Lab 3: Buffer overflows
	Lab 3: Buffer overflows
	Level 0: Candle

