CSE 351

x86 Calling Conventions, Control Flow, & Lab 2



Calling Conventions Review

* This class uses x86-64 conventions, which differ from standard x86
conventions

* The first six arguments are passed in registers:
* %rdi, %rsi, %rdx, %rcx, %r8, %r9

* Any additional arguments go on the stack
« Why?

e Faster!



Caller- vs. Callee-Saved Registers

* Saving registers
* Accomplished via the push command
* Restored using pop

* Callee-saved registers

* Must be saved by a function before changing its value, and then restored
before returning

* %rbx, %rbp, %r12-%r15

 Caller-saved registers

* Must be saved by a function before calling any other subroutines if it wishes
to preserve the value

» All other registers (including all the parameter-passing registers)



Callee/Caller Explained

* Why not have all registers caller, or all registers callee?
* We want to minimize the number of pushes/pops (they’re slow!)

* Think of callee registers are non-volatile
* You must save them to use them, BUT...

* You can be guaranteed that when you call a function, it will have the same value
when it returns

* Good for values that must be preserved for a long time, across many calls

* Think of caller registers as volatile
* You don’t have to save them in order to use them, SO...

* If you ever have values that you need before a function call but don’t need afterward
(i.e. arguments) then they should be in caller-saved registers

* This way, no values are pushed onto the stack unnecessarily



Control Flow

 1-bit condition code registers [CF, SF, ZF, OF]
 Set as side effect by arithmetic instructions or by cmp, test

* CF—Carry Flag

» Set if addition causes a carry out of the most significant (leftmost) bit.
* SF—-Sign Flag

» Set if the result had its most significant bit set (negative in two’s complement)
 /F — Zero Flag

e Set if the result was zero

* OF — Overflow Flag

 If the addition with the sign bits off yields a result number with the sign bit on or vice
versa



Control Flow Examples

x86: Result:

test %rax, %rax ;setZFto1ifrax== Jumps to <locations if rax ==
je <location> s jump if ZF == 1

cmp %rax, %rbx rax and rbx are interpreted as
signed then compared, if

jg <location> (hint: jg checks if ZF = 0 and SF = OF) rbx > rax we jump to <location>

cmp %rax, %rbx Jumps to <location> if rbx is

xor %rbx, %rbx negative (or if rbx is a very large

. . . , unsigned value)
jo <location> (hint: js checks if OF = 1)



Lab 2

* Requires you to defuse “bombs” by entering a series of passcodes
* Not real bombs/viruses/etc!

e Each passcode is validated by some function
* You only have access to the assembly code

* It’s your job to determine what passcodes will prevent the program
from ever calling the explode bomb () function

 Each student has a different bomb



Lab 2 Files

* bomb
* The executable bomb program

* bomb.c

* This is the entry point for the bomb program, and it calls functions whose source
code is not available to you

* defuser.txt
Contains passcodes, each separated by a newline
Place your passcodes here once you solve each phase

Can be passed as an argument to prevent you from entering the passcodes manually
each time

To do this, you canrun set args defuser.txt from within GDB and then
whenever you run your program, it will automatically read its input from defuser.txt



Lab 2 Notes

* The bomb uses sscanf, which parses a string into values

* Example:
int a, b;
sscanft (“123, 456”7, “%d, %d”, &a, &b);

* The first argument is parsed according to the format string
e After this codeisrun,a=123 and b =456



Lab 2 Tips

* Print out the disassembled phases
* To disassemble a program, run ocbjdump -d bomb > bomb.s
* You can then print out bomb. s
* Mark the printouts up with notes

* Try to work backwards from the “success” case of each phase

e Remember that some addresses are pointing to strings located
elsewhere in memory

* Print them out in GDB



Lab 2 Demo

* We will now go through Phase 1 of the bomb!
* Pay close attention and ask questions



