
CSE 351
x86 Calling Conventions, Control Flow, & Lab 2

Calling Conventions Review

• This class uses x86-64 conventions, which differ from standard x86
conventions

• The first six arguments are passed in registers:
• %rdi, %rsi, %rdx, %rcx, %r8, %r9

• Any additional arguments go on the stack

• Why?
• Faster!

Caller- vs. Callee-Saved Registers

• Saving registers
• Accomplished via the push command
• Restored using pop

• Callee-saved registers
• Must be saved by a function before changing its value, and then restored

before returning
• %rbx, %rbp, %r12-%r15

• Caller-saved registers
• Must be saved by a function before calling any other subroutines if it wishes

to preserve the value
• All other registers (including all the parameter-passing registers)

Callee/Caller Explained

• Why not have all registers caller, or all registers callee?
• We want to minimize the number of pushes/pops (they’re slow!)

• Think of callee registers are non-volatile
• You must save them to use them, BUT…
• You can be guaranteed that when you call a function, it will have the same value

when it returns
• Good for values that must be preserved for a long time, across many calls

• Think of caller registers as volatile
• You don’t have to save them in order to use them, SO…
• If you ever have values that you need before a function call but don’t need afterward

(i.e. arguments) then they should be in caller-saved registers
• This way, no values are pushed onto the stack unnecessarily

Control Flow

• 1-bit condition code registers [CF, SF, ZF, OF]

• Set as side effect by arithmetic instructions or by cmp, test

• CF – Carry Flag
• Set if addition causes a carry out of the most significant (leftmost) bit.

• SF – Sign Flag
• Set if the result had its most significant bit set (negative in two’s complement)

• ZF – Zero Flag
• Set if the result was zero

• OF – Overflow Flag
• If the addition with the sign bits off yields a result number with the sign bit on or vice

versa

Control Flow Examples

x86:
test %rax, %rax
je <location>

Result:
; set ZF to 1 if rax == 0 Jumps to <location> if rax == 0
; jump if ZF == 1

cmp %rax, %rbx

jg <location> (hint: jg checks if ZF = 0 and SF = OF)

rax and rbx are interpreted as
signed then compared, if
rbx > rax we jump to <location>

cmp %rax, %rbx

xor %rbx, %rbx

jo <location> (hint: js checks if OF = 1)

Jumps to <location> if rbx is
negative (or if rbx is a very large
unsigned value)

Lab 2

• Requires you to defuse “bombs” by entering a series of passcodes
• Not real bombs/viruses/etc!

• Each passcode is validated by some function
• You only have access to the assembly code

• It’s your job to determine what passcodes will prevent the program
from ever calling the explode_bomb() function

• Each student has a different bomb

Lab 2 Files

• bomb
• The executable bomb program

• bomb.c
• This is the entry point for the bomb program, and it calls functions whose source

code is not available to you

• defuser.txt
• Contains passcodes, each separated by a newline
• Place your passcodes here once you solve each phase
• Can be passed as an argument to prevent you from entering the passcodes manually

each time
• To do this, you can run set args defuser.txt from within GDB and then

whenever you run your program, it will automatically read its input from defuser.txt

Lab 2 Notes

• The bomb uses sscanf, which parses a string into values

• Example:
int a, b;

sscanf(“123, 456”, “%d, %d”, &a, &b);

• The first argument is parsed according to the format string

• After this code is run, a = 123 and b = 456

Lab 2 Tips

• Print out the disassembled phases
• To disassemble a program, run objdump -d bomb > bomb.s

• You can then print out bomb.s

• Mark the printouts up with notes

• Try to work backwards from the “success” case of each phase

• Remember that some addresses are pointing to strings located
elsewhere in memory
• Print them out in GDB

Lab 2 Demo

• We will now go through Phase 1 of the bomb!
• Pay close attention and ask questions

