
CSE 351
GDB Introduction



Lab 2: Bomb Lab

• Lab 2 has been assigned as of yesterday

• You will be disassembling programs and trying to defuse artificial 
“bombs” by determining certain codes

• You likely haven’t covered enough in lecture to do the entire lab right 
now
• This class will cover GDB, which is a debugging tool that can make the lab 

much easier

• Start early!
• You have a couple weeks to complete it

• Some people finish it quickly, some people take a long time



GDB Background

• GNU Debugger

• GDB can help you debug your program in four ways:
• It can run your program

• It can stop your program on specified conditions

• It allows you to examine what has happened once the program has stopped

• It allows you to modify your program’s execution at runtime

• Today we will be going over many of the features that will make GDB 
a great resource for you this quarter



Interactive Demonstration

• In order to learn and remember this tutorial, I recommend that you 
either follow along on your own machine or find someone next to you 
who is doing so

• If you haven’t done so already, download calculator.c from the 
class calendar page

• We want to compile this file with debugging symbols included
• To do this, we must use the –g flag in GCC

• gcc –Wall –std=gnu99 –g calculator.c –o calculator

• Without debugging symbols, GDB is not nearly as useful



Loading the Program

• In order to load a binary into GDB, you simply pass the name of the 
executable to the gdb program

• Try this on your machine
• gdb calculator

• You should see a bunch of version and license information

• The last line before the (gdb) prompt is always the symbol loading 
status
• If you ever see (no debugging symbols found) you may have a 

problem

• In this case, you should see no such message



Exiting GDB

• Before we go any further, it might be helpful to understand how to 
exit GDB

• There are a few ways to exit:
• Ctrl-D

• Typing quit

• Typing q

• Many GDB commands can simply be abbreviated to their first letter, 
as you will see

• If you ever want to stop the current GDB command, just use Ctrl-C



Running the executable

• There are a couple ways you can begin execution of a program in GDB

• The run command will start your program and keep running until it hits a 
critical error or the program finishes
• Try entering run, or just r

• Another popular command for starting a program is, appropriately, start
• This will load your program into memory and break at the beginning of main()
• You will see that most times run is all you need, but there are cases when you want 

to just start stepping through main()

• If you want to specify command-line arguments, you just pass those to 
run or start
• To run calculator, we need to pass three arguments
• Try entering run 2 3 +



Viewing program source code

• If you want to examine your code while debugging (useful when 
trying to find line numbers), use the list (l) command

• For example, let’s look at the code for main()

• To do this, enter list main
• This will display 10 lines of code around the entry to the main() function

• If you want to display 10 lines around line 45, enter list 45

• If you want to display a range of line numbers, such as lines 30-70, 
enter list 30,70



Setting breakpoints

• In order to step through code, we need to be able to stop our code first

• GDB allows you to set breakpoints, just like when you debugged Java programs in Eclipse, 
for example

• The break command will set breakpoints for you (b for short)

• Let’s set a breakpoint at the entry to main()
• Enter break main

• Now enter run and see the program break at main()

• Each breakpoint is given a number
• Our breakpoint is given the number 1
• To disable our breakpoint temporarily, enter disable 1
• To enable our breakpoint again, enter enable 1
• To delete our breakpoint, enter delete 1

• If you ever want to see a summary of all your breakpoints, just enter info break



Stepping through code

• The next command allows you to step through one line of C code at a time, 
stepping over function calls

• The step command is the same, except it steps into function calls

• It works exactly like you would hope, most of the time…
• Caveat: if you loaded some external library that was not compiled with debugging symbols, 

then calls to that library will look confusing when you step into them

• Break your program at the beginning of main, enter next until you arrive at a call 
to printf(), and then enter step to step into the call to printf()
• Note that it doesn’t step into that function call, because it wasn’t compiled with debugging 

symbols

• If you have halted execution and wish to continue running the program, use the 
continue command
• Use that now to run the program to completion 



Printing variables

• GDB has its own print function that is extremely useful

• Let’s print out our command-line arguments in various formats

• Set a breakpoint on line 47 by entering b 47

• Restart running the calculator program with some custom command line 
arguments

• Continue until the breakpoint on line 47 is hit

• Once there, print out the values of the three variables holding your 
arguments (a,b,operator) by typing the following:
• print a

• print b

• print operator



Printing variables (cont.)

• Now let’s try printing out the values of the variables in different 
formats

• Try the following:
• print /x operator

• print /t a

• print print_operation

• print *argv

• print *argv[1]

• print *argv[3]

• What do each of these do?



Debugging

• Let’s look at how GDB enables us to easily identify runtime errors

• Try making the program divide by zero
• run 1 0 /

• If you keep continuing, eventually the program will throw an 
arithmetic exception, and GDB will tell you exactly that

• If you want to see a backtrace, just type bt and it will show you the 
chain of function calls that led to the error
• Viewing a backtrace can be very helpful in debugging



Future topics

• Next week we will be going over some more advanced topics to get 
you through Lab 2

• These include, but are not limited to:
• Disassembling programs

• Stepping through assembly code

• Printing register values

• Examining memory

• If time permits, we can start getting into some of those now, but if 
not feel free to start messing with those on your own


