CSE 351

GDB Introduction



Lab 2: Bomb Lab

* Lab 2 has been assigned as of yesterday

* You will be disassembling programs and trying to defuse artificial
“bombs” by determining certain codes

* You likely haven’t covered enough in lecture to do the entire lab right
now

* This class will cover GDB, which is a debugging tool that can make the lab
much easier
 Start early!

* You have a couple weeks to complete it
* Some people finish it quickly, some people take a long time



GDB Background

* GNU Debugger

e GDB can help you debug your program in four ways:
* It can run your program
* |t can stop your program on specified conditions
* |t allows you to examine what has happened once the program has stopped
* |t allows you to modify your program’s execution at runtime

* Today we will be going over many of the features that will make GDB
a great resource for you this quarter



Interactive Demonstration

* In order to learn and remember this tutorial, | recommend that you
either follow along on your own machine or find someone next to you
who is doing so

* If you haven’t done so already, download calculator.c from the
class calendar page

* We want to compile this file with debugging symbols included
* To do this, we must use the —g flag in GCC
* gcc —Wall -std=gnu99 —-g calculator.c -o calculator
* Without debugging symbols, GDB is not nearly as useful



Loading the Program

* In order to load a binary into GDB, you simply pass the name of the
executable to the gdb program

* Try this on your machine
* gdb calculator

* You should see a bunch of version and license information

* The last line before the (gdb) prompt is always the symbol loading
status

* If you ever see (no debugging symbols found) you may have a
problem

* |n this case, you should see no such message



Exiting GDB

* Before we go any further, it might be helpful to understand how to
exit GDB

* There are a few ways to exit:
* Ctrl-D
* Typing quit
* Typing g
* Many GDB commands can simply be abbreviated to their first letter,
as you will see

* If you ever want to stop the current GDB command, just use Ctr1-C



Running the executable

* There are a couple ways you can begin execution of a program in GDB

* The run command will start your program and keep running until it hits a
critical error or the program finishes

* Try entering run, or just r

e Another popular command for starting a program is, appropriately, start
* This will load your program into memory and break at the beginning of main ()

* You will see that most times run is all you need, but there are cases when you want
to just start stepping through main ()

* |f you want to specify command-line arguments, you just pass those to
run or start
* Torun calculator, we need to pass three arguments
* Tryentering run 2 3 +



Viewing program source code

* If you want to examine your code while debugging (useful when
trying to find line numbers), use the 1ist (1) command

* For example, let’s look at the code formain ()

 To do this, enter 1ist main
* This will display 10 lines of code around the entry to the main () function

* If you want to display 10 lines around line 45, enter 1ist 45

* If you want to display a range of line numbers, such as lines 30-70,
enter List 30, 70



Setting breakpoints

* In order to step through code, we need to be able to stop our code first

* GDB allows you to set breakpoints, just like when you debugged Java programs in Eclipse,
for example

 The break command will set breakpoints for you (b for short)

e Let’s set a breakpoint at the entry tomain ()
* Enter break main

* Now enter run and see the program break at main ()

* Each breakpoint is given a number
* QOur breakpoint is given the number 1
* To disable our breakpoint temporarily, enter disable 1
* To enable our breakpoint again, enter enable 1
* To delete our breakpoint, enter delete 1

* If you ever want to see a summary of all your breakpoints, just enter info break



Stepping through code

* The next command allows you to step through one line of C code at a time,
stepping over function calls

The step command is the same, except it steps into function calls

It works exactly like you would hope, most of the time...
e Caveat: if you loaded some external library that was not compiled with debugging symbols,
then calls to that library will look confusing when you step into them

Break your program at the beginning of main, enter next until you arrive at a call
toprintf (), and then enter step to stepintothecalltoprintf ()
* Note that it doesn’t step into that function call, because it wasn’t compiled with debugging
symbols

If you have halted execution and wish to continue running the program, use the
continue command

* Use that now to run the program to completion



Printing variables

* GDB has its own print function that is extremely useful
* Let’s print out our command-line arguments in various formats
* Set a breakpoint on line 47 by enteringb 47

e Restart running the calculator program with some custom command line
arguments

e Continue until the breakpoint on line 47 is hit

* Once there, print out the values of the three variables holding your
arguments (a, b, operator) by typing the following:
* print a
* print Db
* print operator



Printing variables (cont.)

* Now let’s try printing out the values of the variables in different
formats

* Try the following:
e print /X operator
* print /t a
* print print operation
* print *argv
* print *argv|[1l]
* print *argv|[3]

 What do each of these do?



Debugging

* Let’s look at how GDB enables us to easily identify runtime errors

* Try making the program divide by zero
erun 1 0 /

* If you keep continuing, eventually the program will throw an
arithmetic exception, and GDB will tell you exactly that

* If you want to see a backtrace, just type bt and it will show you the
chain of function calls that led to the error

* Viewing a backtrace can be very helpful in debugging



Future topics

* Next week we will be going over some more advanced topics to get
you through Lab 2

* These include, but are not limited to:
e Disassembling programs
* Stepping through assembly code
* Printing register values
* Examining memory

* If time permits, we can start getting into some of those now, but if
not feel free to start messing with those on your own



