
CSE 351
Final Exam Review

1

Final Exam Review

• The final exam will be comprehensive, but more heavily

weighted towards material after the midterm

• We will do a few problems from previous years’ finals

together as a class

• PLEASE ask questions if you get lost!

2

Quiz

• We have another quiz we want to spend a few minutes on

3

Quiz
• 1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

• ☐ True  False

• 2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

•  True ☐ False

• 3. Shifting an int by 3 bits to the left (<< 3) is the same as multiplying it by 8.

•  True ☐ False

• 4. In C, endianess makes a difference in how character strings (char*) are stored.

• ☐ True  False

• 5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer arithmetic to determine the address of an array element.

•  True ☐ False

• 6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest to smallest.

•  True ☐ False

• 7. An instruction cache takes advantage of only spatial locality.

• ☐ True  False

• 8. Caches are part of the instruction set architecture (ISA) of a computer.

• ☐ True  False

4

Quiz
• 9. Caches make computers slower by getting between the CPU and memory.

• ☐ True  False

• 10. On a 64-bit architecture, if a cache block is 32 bytes, and there are 256 sets in the cache, the tag will be 53 bits.

• ☐ True  False

• 11. A process’s instructions are typically in a read-only segment of memory.

•  True ☐ False

• 12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

•  True ☐ False

• 13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the computer.

•  True ☐ False

• 14. Two running instances of the same process share the same memory address space.

• ☐ True  False

• 15. Java generally has better performance than C.

• ☐ True  False

5

Stacks and Structs

Definition of a print_struct function:

void print_struct(data_struct *y) {

printf("%p\n", y);

printf("%d\n", *(y->b + y->c));

<<execution is suspended here>>

}

6

The program includes the definition for a
data_structure type:

typedef struct data_struct {

int a;

int *b;

int c;

} data_struct;

This is a small snippet of code
corresponding to foo, which has just been
called and in turns calls print_struct:

int foo() {

data_struct x;

int n = 13;

x.a = ???;

x.b = &n;

x.c = 3;

print_struct(&x);

}

Stacks and Structs

7

• Execution is suspended after the printf
statements in print_struct but before it returns
to foo.

• The stack at this point of the execution of the
program is shown below in 4-byte blocks

• Note that the stack is shown as is tradition,
from bottom to top, with the top-most of the
stack at the bottom or lowest address:

0x7fffffffffffa040: 0x00203748

0x7fffffffffffa03c: 0x00000001

0x7fffffffffffa038: 0x0000015f

0x7fffffffffffa034: 0x00000000

0x7fffffffffffa030: 0x00402741

0x7fffffffffffa02c: 0x00000000

0x7fffffffffffa028: 0x00000003

0x7fffffffffffa024: 0x7fffffff

0x7fffffffffffa020: 0xffffa014

0x7fffffffffffa01c: 0x00000000

0x7fffffffffffa018: 0x00000007

0x7fffffffffffa014: 0x0000000d

0x7fffffffffffa010: 0x00000000

0x7fffffffffffa00c: 0x00402053

Stacks and Structs

• What is the value stored in the stack at

the 8-bytes starting at location

0x7fffffffffffa00c to 0x7fffffffffffa013 and

what does it represent?

8

• Execution is suspended after the printf
statements in print_struct but before it returns
to foo.

• The stack at this point of the execution of the
program is shown below in 4-byte blocks

• Note that the stack is shown as is tradition,
from bottom to top, with the top-most of the
stack at the bottom or lowest address:

0x7fffffffffffa040: 0x00203748

0x7fffffffffffa03c: 0x00000001

0x7fffffffffffa038: 0x0000015f

0x7fffffffffffa034: 0x00000000

0x7fffffffffffa030: 0x00402741

0x7fffffffffffa02c: 0x00000000

0x7fffffffffffa028: 0x00000003

0x7fffffffffffa024: 0x7fffffff

0x7fffffffffffa020: 0xffffa014

0x7fffffffffffa01c: 0x00000000

0x7fffffffffffa018: 0x00000007

0x7fffffffffffa014: 0x0000000d

0x7fffffffffffa010: 0x00000000

0x7fffffffffffa00c: 0x00402053

Stacks and Structs

• What is the value stored in the stack at

the 8-bytes starting at location

0x7fffffffffffa00c to 0x7fffffffffffa013 and

what does it represent?

• 0x0000000000402053 which represents

the return address to be used when

print_struct returns to foo.

• Remember endian-ness!

9

• Execution is suspended after the printf
statements in print_struct but before it returns
to foo.

• The stack at this point of the execution of the
program is shown below in 4-byte blocks

• Note that the stack is shown as is tradition,
from bottom to top, with the top-most of the
stack at the bottom or lowest address:

0x7fffffffffffa040: 0x00203748

0x7fffffffffffa03c: 0x00000001

0x7fffffffffffa038: 0x0000015f

0x7fffffffffffa034: 0x00000000

0x7fffffffffffa030: 0x00402741

0x7fffffffffffa02c: 0x00000000

0x7fffffffffffa028: 0x00000003

0x7fffffffffffa024: 0x7fffffff

0x7fffffffffffa020: 0xffffa014

0x7fffffffffffa01c: 0x00000000

0x7fffffffffffa018: 0x00000007

0x7fffffffffffa014: 0x0000000d

0x7fffffffffffa010: 0x00000000

0x7fffffffffffa00c: 0x00402053
<< high order bytes of return address from print_struct

<< low order bytes of return address from print_struct

Stacks and Structs

• What value was assigned to x.a in the

function foo and at what address is it

stored on the stack?

10

• Execution is suspended after the printf
statements in print_struct but before it returns
to foo.

• The stack at this point of the execution of the
program is shown below in 4-byte blocks

• Note that the stack is shown as is tradition,
from bottom to top, with the top-most of the
stack at the bottom or lowest address:

0x7fffffffffffa040: 0x00203748

0x7fffffffffffa03c: 0x00000001

0x7fffffffffffa038: 0x0000015f

0x7fffffffffffa034: 0x00000000

0x7fffffffffffa030: 0x00402741

0x7fffffffffffa02c: 0x00000000

0x7fffffffffffa028: 0x00000003

0x7fffffffffffa024: 0x7fffffff

0x7fffffffffffa020: 0xffffa014

0x7fffffffffffa01c: 0x00000000

0x7fffffffffffa018: 0x00000007

0x7fffffffffffa014: 0x0000000d

0x7fffffffffffa010: 0x00000000

0x7fffffffffffa00c: 0x00402053

Stacks and Structs

• What value was assigned to x.a in the

function foo and at what address is it

stored on the stack?

• The value 0x7 represents x.a and is

stored at location 0x7fffffffffffa018.

11

• Execution is suspended after the printf
statements in print_struct but before it returns
to foo.

• The stack at this point of the execution of the
program is shown below in 4-byte blocks

• Note that the stack is shown as is tradition,
from bottom to top, with the top-most of the
stack at the bottom or lowest address:

0x7fffffffffffa040: 0x00203748

0x7fffffffffffa03c: 0x00000001

0x7fffffffffffa038: 0x0000015f

0x7fffffffffffa034: 0x00000000

0x7fffffffffffa030: 0x00402741

0x7fffffffffffa02c: 0x00000000

0x7fffffffffffa028: 0x00000003

0x7fffffffffffa024: 0x7fffffff

0x7fffffffffffa020: 0xffffa014

0x7fffffffffffa01c: 0x00000000

0x7fffffffffffa018: 0x00000007

0x7fffffffffffa014: 0x0000000d

0x7fffffffffffa010: 0x00000000

0x7fffffffffffa00c: 0x00402053

<< padding (external fragmentation), offset +20

<< x.c, offset +16

<< high order bytes of x.b

<< low order bytes of x.b, offset +8

<< padding (internal fragmentation)

<< x.a, offset +0

<< int n = 13

Structs

12

typedef struct data_struct {

int a;

int *b;

int c;

} data_struct;

Take a look at struct_test.c

Processes

13

• List the two important illusions that the process

abstraction provides to programs.

• For each illusion, list a mechanism involved in its

implementation.

Processes

14

• List the two important illusions that the process

abstraction provides to programs.

• For each illusion, list a mechanism involved in its

implementation.

• 1. Logical control flow: the process executes as if it has

complete control over the CPU. The OS implements this

by interleaving execution of different processes via

context-switching(exceptional control flow...).

• 2. Private linear address space: the process executes as

if it has access to a private contiguous memory the size

of the virtual address space.

Virtual Memory

15

• One purpose of virtual memory is to allow programs to

use more memory than is available in the physical

memory, by storing some parts on disk transparently.

Name some other useful thing that can be done with

the virtual memory system.

Virtual Memory

16

• One purpose of virtual memory is to allow programs to

use more memory than is available in the physical

memory, by storing some parts on disk transparently.

Name some other useful things that can be done with

the virtual memory system.

• 1. Sharing of a single physical page in multiple virtual

address spaces (e.g., shared library code).

• 2. Memory protection mechanisms (e.g., page-granular

read/write/execute permissions or protecting one

process’s memory from another).

TLBs

• Does a TLB (Translation Lookaside Buffer) miss always

lead to a page fault? Why or why not?

17

TLBs

• Does a TLB (Translation Lookaside Buffer) miss always

lead to a page fault? Why or why not?

• No. The TLB caches page table entries. After a TLB miss,

we do an in-memory page table lookup. A page fault

occurs if the page table entry is invalid.

18

Java vs C

• Name some differences between Java references and C

pointers.

19

Java vs C

• Name some differences between Java references and C

pointers.

• 1. C allows pointer arithmetic; Java does not.

• 2. C pointers may point anywhere (including the middles of

memory objects); Java references point only to the start of

objects.

• 3. C pointers may be cast arbitrarily (even to non-pointer types);

casts of Java references are checked to make sure they are

type-safe.

20

