CSE 351

Introduction & Course Tools

Introduction

- I graduated from UW with a Bachelor's degree in computer engineering
- Currently am a 5th-year Masters student
- This is my 7th quarter as a TA for 351
- I run marathons, race triathlons, etc

Why take 351?

- Aside from it being a CSE requirement...
- The labs are fun
- You learn how computers work!
- Introduction to the C language, as well as Intel x86_64 assembly

Working environment

- You have three options
 - Install the <u>CSE Home VM</u> (Recommended)
 - If you have a CS account, you can use the lab machines (or <u>remote into attu</u>)
 - You can use your own personal computer running a Linux distribution (i.e. Ubuntu)

Course Tools

- Text editor
- GNU Compiler Collection (GCC)
- GNU Project Debugger (GDB)
- You can find all of these installed on the CSE Home VM

Text editor

- This is a personal preference
- Try several, choose the one you like
- Command-line
 - Nano
 - Vim
 - Emacs
- Graphical
 - Gedit
 - Emacs

GCC

- This is a command-line utility that compiles your C files
- To create an executable program in C, there are two phases:
 - Compiling
 - Linking
- Compile: gcc -Wall -std=gnu99 -c main.c
 - This produces an object file called main.o
- Link: gcc main.o -o test
 - This produces an executable program called test

GCC

- For this class, you will only be writing simple programs, so you can easily combine the compiling & linking phases
- Compile & Link: gcc -Wall -std=gnu99 main.c -o test
- This accomplishes the same thing as before in just one command

Hello World

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("Hello World!\n");

Try it on your own

- If you have a laptop with you, download the following file: <u>HelloWorld.c</u>
- Navigate to the directory where it is located, compile it, and run it

Try it on your own

- Navigating to the directory:
 - The command cd can help
- Looking inside each directory:
 - Run the ls command
- Compiling the program:
 - gcc HelloWorld.c -o hello
- Running the program:
 - ./hello

About printf()

- Used for printing to the console
- You can't just concatenate strings with variables like you can in Java
- Insert placeholders to print out variables
 - The placeholder depends on the type of the variable
 - "%d", signed int
 - "%u", unsigned int
 - "%f", float
 - "%s", string
 - "%x", hexadecimal int
 - "%p", pointer

Printf() Examples

- printf("I am %d years old", 20)
 - Prints "I am 20 years old"
- printf("My name is %s", "Steve")
 - Prints "My name is Steve"
- printf("%d in hex is %x", 2827, 2827)
 - Prints "2827 in hex is 0xb0b"

Another example

- Download the file: <u>calculator.c</u>
- Again, navigate to the file, compile it, and run it
 - Example usage: ./calculator 4 5 +

Linux man pages

- When you don't know how to use a particular shell command, you have several options
- One option is this site: <u>http://google.com</u>
- Another option is using the man command:
 - man 3 printf
 - This will give a detailed description of printf()

Lab 0 introduction

- If you haven't already downloaded it, go ahead and <u>download Lab 0</u>
- Open the arrays.c file in an editor and we will go through it as time permits