
Section 3.7 Procedures 223

Alternatively, this preparation can be performed by an explicit sequence of
move and pop operations. Register %eax is used for returning the value from any
function that returns an integer or pointer.

Practice Problem 3.30
The following code fragment occurs often in the compiled version of library
routines:

1 call next

2 next:

3 popl %eax

A. To what value does register %eax get set?

B. Explain why there is no matching ret instruction to this call.

C. What useful purpose does this code fragment serve?

3.7.3 Register Usage Conventions

The set of program registers acts as a single resource shared by all of the proce-
dures. Although only one procedure can be active at a given time, we must make
sure that when one procedure (the caller) calls another (the callee), the callee
does not overwrite some register value that the caller planned to use later. For
this reason, IA32 adopts a uniform set of conventions for register usage that must
be respected by all procedures, including those in program libraries.

By convention, registers %eax, %edx, and %ecx are classified as caller-save
registers. When procedure Q is called by P, it can overwrite these registers without
destroying any data required by P. On the other hand, registers %ebx, %esi, and
%edi are classified as callee-save registers. This means that Qmust save the values
of any of these registers on the stack before overwriting them, and restore them
before returning, because P (or some higher-level procedure) may need these
values for its future computations. In addition, registers %ebp and %esp must be
maintained according to the conventions described here.

As an example, consider the following code:

1 int P(int x)

2 {

3 int y = x*x;

4 int z = Q(y);

5 return y + z;

6 }

Section 3.7 Procedures 231

Figure 3.27
Stack frame for recursive
factorial function. The
state of the frame is shown
just before the recursive
call. +8

+4

0

Stack frame
for calling
procedure

Frame pointer
%ebp

Stack frame
for rfact

n

Return address

Saved %ebp

Saved %ebx

n-1
Stack pointer
%esp

the value of (n − 1)! and (2) callee-save register %ebx holds the parameter n. It
therefore multiplies these two quantities (line 13) to generate the return value of
the function.

For both cases—the terminal condition and the recursive call—the code pro-
ceeds to the completion section (lines 15–17) to restore the stack and callee-saved
register, and then it returns.

We can see that calling a function recursively proceeds just like any other
function call. Our stack discipline provides a mechanism where each invocation
of a function has its own private storage for state information (saved values of
the return location, frame pointer, and callee-save registers). If need be, it can
also provide storage for local variables. The stack discipline of allocation and
deallocation naturally matches the call-return ordering of functions. This method
of implementing function calls and returns even works for more complex patterns,
including mutual recursion (for example, when procedure P calls Q, which in turn
calls P).

Practice Problem 3.34
For a C function having the general structure

int rfun(unsigned x) {

if ()

return ;

unsigned nx = ;

int rv = rfun(nx);

return ;

}

gcc generates the following assembly code (with the setup and completion code
omitted):

1 movl 8(%ebp), %ebx

2 movl $0, %eax

3 testl %ebx, %ebx

4 je .L3

232 Chapter 3 Machine-Level Representation of Programs

5 movl %ebx, %eax

6 shrl %eax Shift right by 1

7 movl %eax, (%esp)

8 call rfun

9 movl %ebx, %edx

10 andl $1, %edx

11 leal (%edx,%eax), %eax

12 .L3:

A. What value does rfun store in the callee-save register %ebx?

B. Fill in the missing expressions in the C code shown above.

C. Describe in English what function this code computes.

3.8 Array Allocation and Access

Arrays in C are one means of aggregating scalar data into larger data types. C
uses a particularly simple implementation of arrays, and hence the translation
into machine code is fairly straightforward. One unusual feature of C is that we
can generate pointers to elements within arrays and perform arithmetic with these
pointers. These are translated into address computations in machine code.

Optimizing compilers are particularly good at simplifying the address compu-
tations used by array indexing. This can make the correspondence between the C
code and its translation into machine code somewhat difficult to decipher.

3.8.1 Basic Principles

For data type T and integer constant N , the declaration

T A[N];

has two effects. First, it allocates a contiguous region of L . N bytes in memory,
where L is the size (in bytes) of data type T . Let us denote the starting location
as xA. Second, it introduces an identifier A that can be used as a pointer to the
beginning of the array. The value of this pointer will be xA. The array elements can
be accessed using an integer index ranging between 0 and N−1. Array element i

will be stored at address xA + L . i.
As examples, consider the following declarations:

char A[12];

char *B[8];

double C[6];

double *D[5];

234 Chapter 3 Machine-Level Representation of Programs

of type T , and the value of p is xp, then the expression p+i has value xp + L . i,
where L is the size of data type T .

The unary operators & and * allow the generation and dereferencing of point-
ers. That is, for an expression Expr denoting some object, &Expr is a pointer giving
the address of the object. For an expression AExpr denoting an address, *AExpr
gives the value at that address. The expressions Expr and *&Expr are therefore
equivalent. The array subscripting operation can be applied to both arrays and
pointers. The array reference A[i] is identical to the expression *(A+i). It com-
putes the address of the ith array element and then accesses this memory location.

Expanding on our earlier example, suppose the starting address of integer
array E and integer index i are stored in registers %edx and %ecx, respectively.
The following are some expressions involving E. We also show an assembly-code
implementation of each expression, with the result being stored in register %eax.

Expression Type Value Assembly code

E int * xE movl %edx,%eax

E[0] int M[xE] movl (%edx),%eax

E[i] int M[xE + 4i] movl (%edx,%ecx,4),%eax

&E[2] int * xE + 8 leal 8(%edx),%eax

E+i-1 int * xE + 4i − 4 leal -4(%edx,%ecx,4),%eax

*(E+i-3) int * M[xE + 4i − 12] movl -12(%edx,%ecx,4),%eax

&E[i]-E int i movl %ecx,%eax

In these examples, the leal instruction is used to generate an address, while movl
is used to reference memory (except in the first and last cases, where the former
copies an address and the latter copies the index). The final example shows that
one can compute the difference of two pointers within the same data structure,
with the result divided by the size of the data type.

Practice Problem 3.36
Suppose the address of short integer array S and integer index i are stored in
registers %edx and %ecx, respectively. For each of the following expressions, give
its type, a formula for its value, and an assembly code implementation. The result
should be stored in register %eax if it is a pointer and register element %ax if it is
a short integer.

Expression Type Value Assembly code

S+1

S[3]

&S[i]

S[4*i+1]

S+i-5

296 Chapter 3 Machine-Level Representation of Programs

3.56 ◆◆
Consider the following assembly code:

x at %ebp+8, n at %ebp+12

1 movl 8(%ebp), %esi

2 movl 12(%ebp), %ebx

3 movl $-1, %edi

4 movl $1, %edx

5 .L2:

6 movl %edx, %eax

7 andl %esi, %eax

8 xorl %eax, %edi

9 movl %ebx, %ecx

10 sall %cl, %edx

11 testl %edx, %edx

12 jne .L2

13 movl %edi, %eax

The preceding code was generated by compiling C code that had the following
overall form:

1 int loop(int x, int n)

2 {

3 int result = ;

4 int mask;

5 for (mask = ; mask ; mask =) {

6 result ^= ;

7 }

8 return result;

9 }

Your task is to fill in the missing parts of the C code to get a program equivalent
to the generated assembly code. Recall that the result of the function is returned
in register %eax. You will find it helpful to examine the assembly code before,
during, and after the loop to form a consistent mapping between the registers and
the program variables.

A. Which registers hold program values x, n, result, and mask?

B. What are the initial values of result and mask?

C. What is the test condition for mask?

D. How does mask get updated?

E. How does result get updated?

F. Fill in all the missing parts of the C code.

3.57 ◆◆
In Section 3.6.6, we examined the following code as a candidate for the use of
conditional data transfer:

306 Chapter 3 Machine-Level Representation of Programs

A. What would be the offsets (in bytes) of the following fields:
e1.p:
e1.y:
e2.x:
e2.next:

B. How many total bytes would the structure require?

C. The compiler generates the following assembly code for the body of proc:

up at %ebp+8

1 movl 8(%ebp), %edx

2 movl 4(%edx), %ecx

3 movl (%ecx), %eax

4 movl (%eax), %eax

5 subl (%edx), %eax

6 movl %eax, 4(%ecx)

On the basis of this information, fill in the missing expressions in the code
for proc. Hint: Some union references can have ambiguous interpretations.
These ambiguities get resolved as you see where the references lead. There
is only one answer that does not perform any casting and does not violate
any type constraints.

3.68 ◆
Write a function good_echo that reads a line from standard input and writes it to
standard output. Your implementation should work for an input line of arbitrary
length. You may use the library function fgets, but you must make sure your
function works correctly even when the input line requires more space than you
have allocated for your buffer. Your code should also check for error conditions
and return when one is encountered. Refer to the definitions of the standard I/O
functions for documentation [48, 58].

3.69 ◆
The following declaration defines a class of structures for use in constructing
binary trees:

1 typedef struct ELE *tree_ptr;

2

3 struct ELE {

4 long val;

5 tree_ptr left;

6 tree_ptr right;

7 };

Homework Problems 307

For a function with the following prototype:

long trace(tree_ptr tp);

gcc generates the following x86-64 code:

1 trace:

tp in %rdi

2 movl $0, %eax

3 testq %rdi, %rdi

4 je .L3

5 .L5:

6 movq (%rdi), %rax

7 movq 16(%rdi), %rdi

8 testq %rdi, %rdi

9 jne .L5

10 .L3:

11 rep

12 ret

A. Generate a C version of the function, using a while loop.

B. Explain in English what this function computes.

3.70 ◆◆
Using the same tree data structure we saw in Problem 3.69, and a function with
the prototype

long traverse(tree_ptr tp);

gcc generates the following x86-64 code:

1 traverse:

tp in %rdi

2 movq %rbx, -24(%rsp)

3 movq %rbp, -16(%rsp)

4 movq %r12, -8(%rsp)

5 subq $24, %rsp

6 movq %rdi, %rbp

7 movabsq $-9223372036854775808, %rax

8 testq %rdi, %rdi

9 je .L9

10 movq (%rdi), %rbx

11 movq 8(%rdi), %rdi

12 call traverse

13 movq %rax, %r12

14 movq 16(%rbp), %rdi

15 call traverse

