
The Hardware/Software Interface  
CSE351 Spring 2015

Instructor:
Katelin Bailey

Teaching Assistants:
Kaleo Brandt, Dylan Johnson, Luke Nelson, Alfian Rizqi, Kritin Vij, David
Wong, and Shan Yang

Lecture 15

Roadmap

2

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes
‣ Virtual memory
‣Memory allocation
‣ Java vs. C

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

int array[SIZE];
int A = 0;

for (int i = 0 ; i < 200000 ; ++ i) {
for (int j = 0 ; j < SIZE ; ++ j) {

A += array[j];
}

}

How does execution time grow with SIZE?

3 SIZE

TIME

Plot

Actual Data

4

0

12.5

25

37.5

50

0 2250 4500 6750 9000
SIZE

Ti
m

e

• Cache basics
• Principle of locality
• Memory hierarchies
• Cache organization
• Program optimizations that consider caches

Making memory accesses fast!

5

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Problem: lots of waiting on memory
6

cycle = single fixed-time
 machine step

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

7

cycle = single fixed-time
 machine step

Solution: caches

Cache

• English definition: a hidden storage space for provisions,
weapons, and/or treasures 

• CSE definition: computer memory with short access time
used for the storage of frequently or recently used
instructions or data (i-cache and d-cache)

• More generally: used to optimize data transfers between system
elements with different characteristics (network interface cache, I/O cache,
etc.)

Cache

8

General Cache Mechanics

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper memory
viewed as partitioned into
“blocks” or “lines”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive memory
caches subset of the blocks (a.k.a. lines)

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

10

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:  
determines where b goes
• Replacement policy:  
determines which block  
gets evicted (victim)

11

• Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

Why Caches Work

12

• Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future block

Why Caches Work

13

Why is this important?
Why is this important?
 - We can keep recently accessed items in the cache
 - Those items in the cache are likely to be used again soon
 (and be faster to get when they’re requested!)

• Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:

block

Why Caches Work

14

Any guesses what this is?
 (Answer on next slide)

• Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future
• Spatial locality:

• Items with nearby addresses tend  
to be referenced close together in time

block

block

Why Caches Work

15

How do Caches take advantage of this?
 (Answer on next slide)

• Data:
• Temporal: sum referenced in each iteration
• Spatial: array a[] accessed in stride-1 pattern

• Instructions:
• Temporal: cycle through loop repeatedly
• Spatial: reference instructions in sequence

• Being able to assess the locality of code is a crucial skill for a
programmer

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Where’s the locality in this example?

16

Locality Example #1

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

17

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Locality Example #1

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

18

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

 1: a[0][0]
 2: a[0][1]
 3: a[0][2]
 4: a[0][3]
 5: a[1][0]
 6: a[1][1]
 7: a[1][2]
 8: a[1][3]
 9: a[2][0]
10: a[2][1]
11: a[2][2]
12: a[2][3]

stride-1

Locality Example #2

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

19

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

Locality Example #2

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

20

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

 1: a[0][0]
 2: a[1][0]
 3: a[2][0]
 4: a[0][1]
 5: a[1][1]
 6: a[2][1]
 7: a[0][2]
 8: a[1][2]
 9: a[2][2]
10: a[0][3]
11: a[1][3]
12: a[2][3]

stride-N

Locality Example #3

int sum_array_3d(int a[M][N][N])
{
 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < M; k++)
 sum += a[k][i][j];
 return sum;
}

21

What is wrong with this code? What is wrong with this code?
 - Stride N*N accesses
 - Skips around a lot in memory
 - In other words: bad locality! hard to cache!

How could we fix the code?How could we fix the code?
 - Move the for loop with k to the outside

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider :  

Cache hit time of 1 cycle  
Miss penalty of 100 cycles

Cost of Cache Misses

22

cycle = single fixed-time
 machine step

• Huge difference between a hit and a miss
• Could be 100x, if just L1 and main memory

• Would you believe 99% hits is twice as good as 97%?
• Consider :  

Cache hit time of 1 cycle  
Miss penalty of 100 cycles

• Average access time:
• 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
• 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

• This is why “miss rate” is used instead of “hit rate”

Cost of Cache Misses

23

cycle = single fixed-time
 machine step

check the cache every time

• Miss Rate
• Fraction of memory references not found in cache (misses / accesses)  

= 1 - hit rate
• Typical numbers (in percentages):

• 3% - 10% for L1
• Can be quite small (e.g., < 1%) for L2, depending on size, etc.

• Hit Time
• Time to deliver a line in the cache to the processor

• Includes time to determine whether the line is in the cache
• Typical hit times: 1 - 2 clock cycles for L1; 5 - 20 clock cycles for L2

• Miss Penalty
• Additional time required because of a miss
• Typically 50 - 200 cycles for L2 (trend: increasing!)

Cache Performance Metrics

24

Can we have more than one cache?

25

Why would we want to have more than one cache? Why would we want to have more than one cache?
 - cache more than one type of thing (instr vs data)
 - caches with different properties

-slightly bigger/slower caches bridge the gap

• Some fundamental and enduring properties of hardware and
software systems:

• Faster storage technologies almost always cost more per byte and have
lower capacity

• The gaps between memory technology speeds are widening
• True for : registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

• Well-written programs tend to exhibit good locality

• These properties complement each other beautifully

• They suggest an approach for organizing memory and storage
systems known as a memory hierarchy

Memory Hierarchies

26

An Example Memory Hierarchy

27

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files retrieved
from disks on remote network
servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

An Example Memory Hierarchy

28

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

• Fundamental idea of a memory hierarchy:
• For each k, the faster, smaller device at level k serves as a cache for the

larger, slower device at level k+1.
• Why do memory hierarchies work?

• Because of locality, programs tend to access the data at level k more often
than they access the data at level k+1.

• Thus, the storage at level k+1 can be slower, and thus larger and cheaper
per bit.

• Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

Memory Hierarchies

29

Intel Core i7 Cache Hierarchy

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for all
caches.

30

