CSE 351

buffer overflows and lab 3

Buffer overflows

 C performs no bounds-checking on array accesses
* This makes it fast but also unsafe

*For example: int arr[10]; arr[1l5] = 3;
* No compiler warning, just memory corruption

* What symptoms are there when programs write past
the end of arrays?
* Hint: we saw an example of thisin lab 0

not drawn to scale

X386-64 Linux Memory Layout

OOOO07FFFFFFFFFFF 3\
Stack
1 > 8MB

e Stack)

* Runtime stack (8MB limit)

* E. g., local variables
* Heap

* Dynamically allocated as needed

* When call malloc(), calloc(), new()

Libraries

e Statically allocated data
* Read-only: string literals
» Read/write: global arrays and variables 4

e Text / Shared Libraries

.) Hea

* Executable machine instructions P
e Read-only Data
Text

Hex Address 400000
000000

Reminder: x86-64/Linux Stack Frame

(
Stack Frame
* Arguments (if > 6 args) for this call
* Return address
o ‘ _ CaIIer<
Pushed by call instruction Frame
JArguments
* Current/ Callee Stack Frame ; 74+
* Old f;ame. pointer (optional) Frame pointer _ |Return Addr
Save register context $rbp——— | Old $rbp
(when reusing registers) .
_ (Optional)
. Llcf>cal \{art;abkles _ _ Saved
(If can’t be e;?t in registers) Registers
* “Argument build” area +
(If callee needs to call another function - Local
parameters for function about to call, if needed) .
Variables
Argument
Stack pointer Build
$rSp—r (Optional)

Stack layout

Return
| et
* Note that the top of the diagram represents m;(;l:]i;fn
higher addresses, and the bottom is lower
Saved
addresses registers
int a
intb
* To which memory does d[10] refer in this
uinté4_tc

example?

char d[8]

Buffer overflow attacks

* In buffer overflow attacks, malicious users pass
values to attempt to overwrite important parts
of the stack or heap

* For example, an attacker could overwrite the
return instruction pointer with the address of a
malicious block of code

Return
instruction
pointer

Saved
registers

int a

intb

uinté4_tc

char d[8]

Protecting against overflows

e fgets(char* s, int size, FILE*

stream)

* Takes a size parameter and will only read that many bytes
from the given input stream

strncpy (char dest, const char*

src, size t n)

* Will copy at most n bytes from src to dest

Protecting against overflows

e Stack canaries

* Use a random integer before return instruction pointer
and see if its been tampered with.

* Data execution prevention

* Mark some parts of the memory (notably the stack) as
non-executable.

Lab 3: Intro

*Lab 3 is meant to teach you how buffer
overflow attacks work

*The stages of this lab require different types
of attacks to achieve certain goals

Lab 3: Buffer overflow exploits

* The exploitable function in lab 3 is called Get s (capital ‘G’)

* It is called from the getbuf function

* getbuft allocates a small array and reads user input into it

via Gets.

* If the user input is too long, then certain values on the stack
within the getbuf function will be overwritten...

Lab 3: Buffer Overflow

This has a buffer overflow

int getbuf() {
char buf[36];
Gets(buf);
return 1;

}

Why?
- Gets () doesn’t check the length
of the buffer

The Stack in getbuf()

return addr

saved regs

(if any)

local vars

Lab 3: Buffer Overflow

This has a buffer overflow The Stack in getbuf()
int getbuf() {
char buf[36];
Gets (but); return addr
return 1;
} saved regs
(if any)
Why!? local vars

- Gets () doesn't check the length
of the buffer

Lab 3; Buffer Overflow

This has a buffer overflow The Stack in getbuf()

int getbuf() ({
char buf[36];
Gets(buf);

return addr

return 1;
} saved regs
(if any)
Why!?
- Gets () doesn't check the length 36 bytes out [?5]
of the buffer buf [b]

Level 0: Call smoke ()

Goal: call the smoke() function The Stack in getbuf()
from getbuf()

int getbuf() {
char buf[36];
Gets (buf);
return 1;

}

How?
= overwrite the return address i
so we “return” to smoke() o

Lab 3: Understand the tools

* sendstring — Use to generate your malicious strings
 Takes a list of space-separated hex values and formats them in raw bytes
suited for exploits

* gdb - You will use this a lot to inspect your code

* set args —u <username>
* Set the argument to the program
e x/40wx (Srsp - 40)
* Show the 40 bytes above rsp
* Change wto g to check the value in 8 byte chunks.

*b *(&getbuf + 12)
* Create a breakpoint at 12 bytes away after the start of getbuf

*bufbomb - u [UW NetID] - Everyone’s lab is different
* Your username alters the lab slightly

Level O walkthrough

*Goal: Make getbuf () jump to a function
called smoke ()

*How? Overwrite the return address with
your own
* Write past the end of the buffer to do this

