
CSE 351
buffer overflows and lab 3

Buffer overflows

•C performs no bounds-checking on array accesses
• This makes it fast but also unsafe

•For example: int arr[10]; arr[15] = 3;
• No compiler warning, just memory corruption

•What symptoms are there when programs write past
the end of arrays?
• Hint: we saw an example of this in lab 0

2

x86-64 Linux Memory Layout

• Stack
• Runtime stack (8MB limit)

• E. g., local variables

• Heap
• Dynamically allocated as needed

• When call malloc(), calloc(), new()

• Data
• Statically allocated data

• Read-only: string literals
• Read/write: global arrays and variables

• Text / Shared Libraries
• Executable machine instructions

• Read-only

Autumn 2015 Buffer Overflow 3

Hex Address

00007FFFFFFFFFFF

000000

Stack

Text

Data

Heap

400000

8MB

not drawn to scale

Shared
Libraries

Reminder: x86-64/Linux Stack Frame
• Caller’s Stack Frame

• Arguments (if > 6 args) for this call

• Return address
• Pushed by call instruction

• Current/ Callee Stack Frame
• Old frame pointer (optional)

• Saved register context
(when reusing registers)

• Local variables
(If can’t be kept in registers)

• “Argument build” area
(If callee needs to call another function -
parameters for function about to call, if needed)

Autumn 2015 Buffer Overflow 4

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7+

Caller

Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Low Addresses

High Addresses

Stack layout

• Note that the top of the diagram represents

higher addresses, and the bottom is lower

addresses

• To which memory does d[10] refer in this

example?

5

Return
instruction

pointer

Saved
registers

int a

int b

uint64_t c

char d[8]

...

Buffer overflow attacks

• In buffer overflow attacks, malicious users pass

values to attempt to overwrite important parts

of the stack or heap

• For example, an attacker could overwrite the

return instruction pointer with the address of a

malicious block of code

6

Return
instruction

pointer

Saved
registers

int a

int b

uint64_t c

char d[8]

...

Protecting against overflows

•fgets(char* s, int size, FILE*

stream)

• Takes a size parameter and will only read that many bytes

from the given input stream

•strncpy(char* dest, const char*

src, size_t n)

• Will copy at most n bytes from src to dest

7

Protecting against overflows

•Stack canaries

• Use a random integer before return instruction pointer

and see if its been tampered with.

•Data execution prevention

• Mark some parts of the memory (notably the stack) as

non-executable.

8

Lab 3: Intro

•Lab 3 is meant to teach you how buffer

overflow attacks work

•The stages of this lab require different types

of attacks to achieve certain goals

9

Lab 3: Buffer overflow exploits

• The exploitable function in lab 3 is called Gets (capital ‘G’)

• It is called from the getbuf function

•getbuf allocates a small array and reads user input into it

via Gets.

• If the user input is too long, then certain values on the stack

within the getbuf function will be overwritten...

10

Lab 3: Understand the tools

• sendstring – Use to generate your malicious strings

• Takes a list of space-separated hex values and formats them in raw bytes

suited for exploits

• gdb – You will use this a lot to inspect your code
• set args –u <username>

• Set the argument to the program

• x/40wx ($rsp – 40)

• Show the 40 bytes above rsp

• Change w to g to check the value in 8 byte chunks.

• b *(&getbuf + 12)

• Create a breakpoint at 12 bytes away after the start of getbuf

• bufbomb – u [UW_NetID] - Everyone’s lab is different

• Your username alters the lab slightly

15

Level 0 walkthrough

•Goal: Make getbuf() jump to a function
called smoke()

•How? Overwrite the return address with
your own
•Write past the end of the buffer to do this

16

