
CSE 351 
More GDB, Intro to x86 Calling Conventions, Control Flow,  & Lab 2 

1 



GDB Part II: Using GDB with C files 

• GDB Cheat Sheet 
http://courses.cs.washington.edu/courses/cse351/15au/sections/1/g
dbnotes-x86-64.pdf 

• Go on:  
http://courses.cs.washington.edu/courses/cse351/15au/gdb.html 
Scroll down to “Review with two examples” 

• Download files and follow steps in GDB commands linked 

2 

http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/gdb.html
http://courses.cs.washington.edu/courses/cse351/13au/gdb.html


GDB Exercise 0 

• How can I display something persistently? 

 

3 



Display! 

• display /i $pc    (show the current instruction) 

• display /x $rax  (show the contents of %rax in hex) 

• display /16bd $rdi (show the 16 bytes of memory pointed to by $rdi 
as integers in decimal) 

4 



Other ways to display assembly instructions: 

• disas 

• layout asm (Ctrl-X a to exit…) 

• or just print it all out! (objdump -d bomb…) see the lab page! 
 

5 



GDB Exercise 1 

• How can I view the arguments passed to a function? 

6 



breakpoints! 

• break function_name 

• step 

• … 

• info, print [or] x / on $rdi, $rsi, … 

7 



GDB Exercise 2 

• If I’m running a function and I just want to see its return value 
without stepping through each instruction, how would I do that? 

8 



fin! 

• fin 

• info [or] x to examine the contents of $rax 

 

9 



Register Conventions Intro  

• Where do parameters and return values go for function calls? 

• Parameters: %rdi, %rsi, %rdx, %rcx, %r8, %r9 

• Return value: %rax 

• We’ll see how this is used in phase_1 of the lab 

10 



Function Calls & Registers Intro 

• Let’s say one of your functions looks like 
foo(){ 

int bar = some + complex + calculation; 

int bar2 = complex_subroutine(); 

return bar * bar2; 

} 

• What happens to ‘bar’ if it was in a register? 

• Some registers are caller-saved, others callee-saved 

• Why have a calling convention?  Linked libraries, … 
 

11 



Control Flow 

• 1-bit condition code registers [CF, SF, ZF, OF] 

• Set as side effect by arithmetic instructions or by cmp, test 

• CF – Carry Flag 
• Set if addition causes a carry out of the most significant (leftmost) bit. 

• SF – Sign Flag 
• Set if the result had its most significant bit set (negative in two’s complement) 

• ZF – Zero Flag 
• Set if the result was zero 

• OF – Overflow Flag 
• If the addition with the sign bits off yields a result number with the sign bit on or vice 

versa 

 
12 



Control Flow Examples 

x86: 
test %rax, %rax   
je <location> 

 

Result: 
 ; set ZF to 1 if rax == 0           Jumps to <location> if rax == 0 

; jump if ZF == 1 
 

cmp %rax, %rbx    

jg <location> (hint: jg checks if ZF = 0 and SF = OF) 

    rax and rbx are interpreted as 
    signed then compared, if  
    rbx > rax we  jump to <location> 

cmp %rax, %rbx    

xor %rbx, %rbx 

js <location> (hint: js checks if MSB of result = 1) 

    Never jumps to <location> 

13 



Lab 2 

• Requires you to defuse “bombs” by entering a series of passcodes 
• Not real bombs/viruses/etc! 

• Each passcode is validated by some function 
• You only have access to the assembly code 

• It’s your job to determine what passcodes will prevent the program 
from ever calling the explode_bomb() function 

• Each student has a different bomb 

14 



Lab 2 Files 

• bomb 
• The executable bomb program 

• bomb.c 
• This is the entry point for the bomb program, and it calls functions whose source 

code is not available to you 

• defuser.txt 
• Contains passcodes, each separated by a newline 
• Place your passcodes here once you solve each phase 
• Can be passed as an argument to prevent you from entering the passcodes manually 

each time 
• To do this, you can run set args defuser.txt from within GDB and then 

whenever you run your program, it will automatically read its input from defuser.txt 

15 



Lab 2 Notes 

• The bomb uses sscanf, which parses a string into values 

• Example: 
int a, b; 

sscanf(“123, 456”, “%d, %d”, &a, &b); 

• The first argument is parsed according to the format string 

• After this code is run, a = 123 and b = 456 

• Try man 3 sscanf for more details, try searching on “return value” 
(/return value) to see what sscanf returns. 

 
 

16 



Lab 2 Tips 

• Print out the disassembled phases 
• To disassemble a program, run objdump -d bomb > bomb.s 

• You can then print out bomb.s 

• Mark the printouts up with notes 

• Try to work backwards from the “success” case of each phase 

• Remember that some addresses are pointing to strings located 
elsewhere in memory 
• Print them out in GDB 

17 



Lab 2 Phase 1 

• Let’s Dive In! 

18 


