CSE 351

More GDB, Intro to x86 Calling Conventions, Control Flow, & Lab 2



GDB Part Il: Using GDB with C files

 GDB Cheat Sheet
http://courses.cs.washington.edu/courses/cse351/15au/sections/1/g
dbnotes-x86-64.pdf

* Goon:
http://courses.cs.washington.edu/courses/cse351/15au/gdb.html
Scroll down to “Review with two examples”

* Download files and follow steps in GDB commands linked


http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/sections/1/gdbnotes-x86-64.pdf
http://courses.cs.washington.edu/courses/cse351/13au/gdb.html
http://courses.cs.washington.edu/courses/cse351/13au/gdb.html

GDB Exercise O

* How can | display something persistently?



Display!

* display /i Spc (show the current instruction)
e display /x Srax (show the contents of %rax in hex)

e display /16bd Srdi (show the 16 bytes of memory pointed to by Srdi
as integers in decimal)




Other ways to display assembly instructions:

* disas
* [ayout asm (Ctrl-X a to exit...)
e or just print it all out! (objdump -d bomb...) see the lab page!



GDB Exercise 1

* How can | view the arguments passed to a function?



breakpoints!

* break function_name
e step

* info, print [or] x / on Srdi, Srsi, ...



GDB Exercise 2

* If ’'m running a function and | just want to see its return value
without stepping through each instruction, how would | do that?



fin!

* fin

* info [or] x to examine the contents of Srax



Register Conventions Intro

* Where do parameters and return values go for function calls?
e Parameters: %rdi, %rsi, %rdx, %rcx, %r8, %r9

* Return value: %rax

 We'll see how this is used in phase 1 of the lab



Function Calls & Registers Intro

* Let’s say one of your functions looks like
foo(){

int bar = some + complex + calculation;
int bar2 = complex_subroutine();
return bar * bar2;

}

* What happens to ‘bar’ if it was in a register?
* Some registers are caller-saved, others callee-saved
* Why have a calling convention? Linked libraries, ...



Control Flow

* 1-bit condition code registers [CF, SF, ZF, OF]
 Set as side effect by arithmetic instructions or by cmp, test

* CF—Carry Flag

» Set if addition causes a carry out of the most significant (leftmost) bit.
* SF —-Sign Flag

» Set if the result had its most significant bit set (negative in two’s complement)
 /F — Zero Flag

e Set if the result was zero

* OF — Overflow Flag

 If the addition with the sign bits off yields a result number with the sign bit on or vice
versa



Control Flow Examples

x86: Result:

test %rax, %rax ;setZFto1ifrax== Jumps to <locations if rax ==
je <location> s jump if ZF == 1

cmp %rax, %rbx rax and rbx are interpreted as
signed then compared, if

jg <location> (hint: jg checks if ZF = 0 and SF = OF) rbx > rax we jump to <location>

cmp %rax, %rbx Never jumps to <location>
xor %rbx, %rbx
js <location> (hint: js checks if MSB of result = 1)



Lab 2

* Requires you to defuse “bombs” by entering a series of passcodes
* Not real bombs/viruses/etc!

* Each passcode is validated by some function
* You only have access to the assembly code

* It’s your job to determine what passcodes will prevent the program
from ever calling the explode bomb () function

 Each student has a different bomb



Lab 2 Files

°* bomb
* The executable bomb program

* bomb.c

* This is the entry point for the bomb program, and it calls functions whose source
code is not available to you

* defuser.txt
Contains passcodes, each separated by a newline
Place your passcodes here once you solve each phase

Can be passed as an argument to prevent you from entering the passcodes manually
each time

To do this, you canrun set args defuser.txt from within GDB and then
whenever you run your program, it will automatically read its input from defuser.txt



Lab 2 Notes

* The bomb uses sscanf, which parses a string into values

* Example:
int a, b;
sscanf (Y123, 4506”, %“%d, %d”, &a, &b);

* The first argument is parsed according to the format string
e After this code isrun, a=123 and b =456

* Tryman 3 sscanf for more details, try searching on “return value”
(/return value) to see what sscanf returns.



Lab 2 Tips

* Print out the disassembled phases
* To disassemble a program, run ocbjdump -d bomb > bomb.s
* You can then print out bomb. s
* Mark the printouts up with notes

* Try to work backwards from the “success” case of each phase

e Remember that some addresses are pointing to strings located
elsewhere in memory

* Print them out in GDB



Lab 2 Phase 1

e Let’s Dive In!



