CSE 351

Number Representation & Operators
Section 2
October 8, 2015

Number Bases

*Any numerical value can be represented as a linear combination of
powers of n, where n is an integer greater than 1
*Example: decimal (n=10)
*Decimal numbers are just linear combinations of 1, 10, 100, 1000, etc
*1234 =1*1000 + 2*100 + 3*10 + 4*1
*We can also use the base n=2 (binary) or n=16 (hexadecimal)

Binary Numbers

*Each digit is eitheralora0

*Each digit corresponds to a power of 2

*Why use binary?
*Easy to physically represent two states in memory, registers, across wires, etc
*High/Low voltage levels
*This can scale to much larger numbers by using more hardware to store more
bits

Converting Binary Numbers

*To convert the decimal number d to binary, do the following:
*Compute (d % 2). This will give you the lowest-order bit
*Continue to divide d by 2, round down to the nearest integer, and
compute (d % 2) for successive bits
*Example: Convert 25 to binary

*First bit: (25% 2) =1

*Second bit: (12 % 2)=0

*Third bit: 6% 2 =0

*Fourthbit:3% 2=1

*Fifthbit: 1% 2=1

*Stop because we reached zero

Hexadecimal Numbers

*Same concept as decimal and binary, but the base is 16
*Why use hexadecimal?

*Easy to convert between hex and binary

*Much more compact than binary

Converting Hexadecimal Numbers

*To convert a decimal number to hexadecimal, use the same technique
we used for binary, but divide/mod by 16 instead of 2
*Hexadecimal numbers have a prefix of “Ox”
*Example: Convert 1234 to hexadecimal

First digit: (1234 % 16) = 2

°1234 /16 =77

*Second digit: (77 % 16) =13 =D

77 /16 =4

*Third digit: 4 % 16 =4

4/16=0

*Stop because we reached zero

*Result: 0x4D2

Representing Signed Integers

*There are several ways to represent signed integers
*Sign & Magnitude
*Use 1 bit for the sign, remaining bits for magnitude
*Works OK, but there are 2 ways to represent zero (-0 and 0)
*Also, arithmetic is tricky
*Two’s Complement
Similar to regular binary representation
*Highest bit has negative weight rather than positive
*Works well with arithmetic, only one way to represent zero

Two’s Complement

*This is an example of the range of
numbers that can be represented by a 4-
bit two’s complement number
*An n bit, two’s complement number can
represent the range [-2*(n-1), 2*(n-1)-1]
*Note the asymmetry of this range about O
*Note what happens when you overflow
*If you still don’t understand it, speak up!
*Very confusing concept

1101

1100

1011

1110

1010

0

0000
1111

Bitwise Operators

*NOT: ~

*This will flip all bits in the operand
*AND: &

*This will perform a bitwise AND on every pair of bits
*OR: |

*This will perform a bitwise OR on every pair of bits
*XOR: A

*This will perform a bitwise XOR on every pair of bits
*SHIFT: <<,>>

*This will shift the bits right or left

Logical Operators

*NOT: !
*Evaluates the entire operand, rather than each bit
*Produces a 1 if == 0, produces 0 otherwise

*AND: &&
*Produces 1 if both operands are nonzero

*OR: ||

*Produces 1 if either operand is nonzero

Common Operator Uses

*A double bang (!!) is useful when normalizing valuestoO or 1
*Imitates Boolean types
*Shifts are useful for multiplying/dividing quickly
*Most multiplications are reduced to shifts when possible by GCC already
*When writing assembly routines, shifts will be more useful
*Shifts are also consistent for negative numbers (thanks to sign extension)
DeMorgan’s Laws:
~(A|B) == (~A & ~B)
~(A&B) == (~A | ~B)

Masks

*These are usually strings of 1s that are used to isolate a subset of bits
in an operand
*Example: the mask OxFF will “mask” the first byte of an integer
*Once you have created a mask, you can shift it left or right
*Example: the mask OxFF << 8 will “mask” the second byte of an integer
*You can apply a mask in different ways
*To set bits in x, you can do x = x | MASK
*To invert bits in x, you can do x = x » MASK
*To erase everything but the desired bits in x, do x = x & MASK

Application: Symmetric Encryption

*This is an example that shows how XOR can be used to encrypt data
*Say Alice wishes to communicate message M to Bob
*Let M be the bit string: 0b11011010
*Both Alice and Bob have a secret cipher key C
*Let C be the bit string: 0b01100010
*Alice sends Bob the encrypted message M =M " C

‘M’ = 0b10111000
*Bob applies C to M’ to retrieve M
‘M AC= Ob11011010

*XOR ciphers are not very secure by themselves, but the XOR operation
is used in some modes of AES encryption

Application: Gray Codes

*Gray Codes encode numbers such that consecutive numbers only
differ in their representations by 1 bit
*Useful when trying to transfer counter values across different clock domains
(common in FIFOs)
*|f each wire represents one binary digit, we want to ensure that when the
counter increments, the voltage level changes only on one wire
*Let n be our counter output
*(n >> 1) » n will produce a gray coded version of n
*If we receive the gray code g, we need to convertitton:

for (int mask = g >> 1; mask != 0; mask >> 1) {
g = g ~ mask;
}
*For an example, compile and run gray code.c

Llab 1

*Worksheet in class
*Tips
*Work on 8-bit versions first, then scale your solution to work for 32-bit inputs

*Save intermediate results in variables for clarity
*SHIFTING BY MORE THAN 31 BITS IS UNDEFINED! It will not yield O

Example Problems

*Create OXFFFFFFFF using only one operator
*Limited to constants from 0x00 -> OxFF
*Naive approach: OxFF + (OxFF << 8) + (OxFF << 16) ...
*Smart approach: ~0x00 = OxFFFFFFFF

Example Problems

*Replace the leftmost byte of a 32-bit integer with OxAB
*Let our integer be x

*First, we want to create a mask for the lower 24 bits of the image
*~(OxFF << 24) will do that using just two operations

*(x & mask) will zero out the leftmost 8 bits

*Now, we want to OR in OxAB to those zeroed-out bits
*(x & mask) | (0xAB << 24) will accomplish this

*Total operators: 5

