
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Java vs. C

University of Washington

Java vs. C

 Reconnecting to Java
 Back to CSE143!

 But now you know a lot more about what really happens when we
execute programs

 We’ve learned about the following items in C; now we’ll see
what they look like for Java:
 Representation of data

 Pointers / references

 Casting

 Function / method calls

 Runtime environment

 Translation from high-level code to machine code

2 Autumn 2015 Java vs. C

University of Washington

Meta-point to this lecture

 None of the data representations we are going to talk about
are guaranteed by Java

 In fact, the language simply provides an abstraction

 We can't easily tell how things are really represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program
 just like caching, etc.

Java vs. C Autumn 2015 3

University of Washington

Data in Java

 Integers, floats, doubles, pointers – same as C
 Yes, Java has pointers – they are called ‘references’ – however, Java

references are much more constrained than C’s general pointers

 Null is typically represented as 0

 Characters and strings

 Arrays

 Objects

Java vs. C Autumn 2015 4

University of Washington

Data in Java: Arrays
 Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4 bytes)

 array.length returns value of this field

 Since it has this info, what can it do?

int array[5]; // C

int[] array = new int[5]; // Java

5 00 00 00 00 00 Java

0 4 20

C

24

?? ?? ?? ?? ??

Java vs. C Autumn 2015 5

University of Washington

Data in Java: Arrays
 Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4 bytes)

 array.length returns value of this field

 Every access triggers a bounds-check

 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

int array[5]; // C

int[] array = new int[5]; // Java

5 00 00 00 00 00 Java

0 4 20

C

24

?? ?? ?? ?? ??

Java vs. C

Bounds-checking sounds slow, but:
1. Length field is likely in cache.
2. Compiler may store length field in

register for loops.
3. Compiler may prove that some checks

are redundant.

Autumn 2015 6

University of Washington

Data in Java: Characters & Strings

 Characters and strings
 Two-byte Unicode instead of ASCII

 Represents most of the world’s alphabets

 String not bounded by a ‘\0’ (null character)

 Bounded by hidden length field at beginning of string

the string ‘CSE351’:

43 \0

0 1 4 16

53 45 33 35 31

6 00 43 00 53 00 45 00 33 00 35 00 31

7

C: ASCII

Java: Unicode

Java vs. C Autumn 2015 7

University of Washington

Data structures (objects) in Java

 Objects are always stored by reference, never stored “inline”.
 Include complex data types (arrays, other objects, etc.) using references

C struct rec {

 int i;

 int a[3];

 struct rec *p;

};

Java class Rec {

 int i;

 int[] a = new int[3];

 Rec p;

…

}

i a p

0 4 16 24

i a p

0 4 20 12

int[3]

4 16

3

0

Java vs. C Autumn 2015 8

Example of array stored “inline”

University of Washington

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like C’s r->a

Java vs. C

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

Autumn 2015 9

University of Washington

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 And can only be dereferenced to access a field or element of that object

C struct rec {
 int i;

 int a[3];

 struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])) //ptr

Java class Rec {
 int i;

 int[] a = new int[3];

 Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1) // ref, index

i a p

0 4 16 24

Java vs. C

r
r

Autumn 2015 10

i a p

0 4 20 12

int[3]

4 16

3

0

University of Washington

s n

0

p

8 16 24

Casting in C (example from Lab 5)
 We can cast any pointer into any other pointer;

just look at the same bits differently

 struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

…

int x;

BlockInfo *b;

BlockInfo *newBlock;

…

newBlock = (BlockInfo *) ((char *) b + x);

…

Cast b into char
pointer so that
you can add byte
offset without
scaling

Cast back into
BlockInfo pointer
so you can use it
as BlockInfo struct

x

s p n

Java vs. C Autumn 2015 11

University of Washington

Type-safe casting in Java
 Can only cast compatible object references

// Vehicle is a super class of Boat and Car, which are siblings

Vehicle v = new Vehicle();

Car c1 = new Car();

Boat b1 = new Boat();

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

class Object {

 …

}

Java vs. C Autumn 2015 12

University of Washington

 Can only cast compatible object references

// Vehicle is a super class of Boat and Car, which are siblings

Vehicle v = new Vehicle();

Car c1 = new Car();

Boat b1 = new Boat();

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

// OK, everything needed for Vehicle

// is also in Car

// OK, v1 is declared as type Vehicle

// Compiler error - Incompatible type – elements

// in Car that are not in Boat (classes are siblings)

// Compiler error - Wrong direction; elements in Car

// not in Vehicle (wheels)

// Run-time error; Vehicle does not contain

// all elements in Boat (propellers)

// OK, v2 refers to a Car at runtime

// Compiler error - Incovertible types,

// b1 is declared as type Boat

Type-safe casting in Java

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

class Object {

 …

}

Java vs. C Autumn 2015 13

How is this
implemented/
 enforced?

University of Washington

Java objects

14

class Point {

 double x;

 double y;

 Point() {

 x = 0;

 y = 0;

 }

 boolean samePlace(Point p) {

 return (x == p.x) && (y == p.y);

 }

}

…

Point p = new Point();

…

constructor

fields

method

creation

Autumn 2015 Java vs. C

University of Washington

Java objects

 vtable pointer : points to virtual method table
 like a jump table for instance (“virtual”) methods plus other class info

 one table per class

 Object header : GC info, hashing info, lock info, etc. (no size – why?)

 When we call “new” : allocate space for object; zero/null fields;
run constructor
 compiler actually resolves constructor like a static method

15 Autumn 2015 Java vs. C

x y

p

code for Point() code for samePlace()

Point class vtable

header

x y

q

header

Point object

Point object
vtable pointer

vtable pointer

University of Washington

Java Methods

 Static methods are just like functions.

 Instance methods
 can refer to this;

 have an implicit first parameter for this; and

 can be overridden in subclasses.

 The code to run when calling an instance method (e.g.,
p.samePlace(q)) is chosen at run-time by lookup in the vtable.

16

Point p = new Point();

return p.samePlace(q);

Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

return p->vtable[1](p, q);

Java: C pseudo-translation:

Autumn 2015 Java vs. C

University of Washington

Method dispatch

Point p = new Point();

return p.samePlace(q);

Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

return p->vtable[1](p, q);

Java: C pseudo-translation:

Autumn 2015 17 Java vs. C

x y

p

code for Point() code for samePlace()

Point class vtable

header

x y

q

header

Point object

Point object
vtable pointer

vtable pointer

University of Washington

Subclassing

 Where does “aNewField” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on

PtSubClass objects without modification.

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, write over old pointer

 Add new pointer at end of table for new method “sayHi”

class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

Java vs. C Autumn 2015 18

University of Washington

Subclassing
class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

constructor samePlace

x vtable y aNewField

sayHi

vtable for PtSubClass
(not Point)

Pointer to new code for samePlace
Pointer to old code for constructor

aNewField tacked on at end

Java vs. C Autumn 2015 19

Pointer to code for sayHi

PtSubclass object

header

University of Washington

Dynamic dispatch

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for Point()

code for Point’s samePlace()

PtSubclass object

Point object

Point vtable

x y header
vtable pointer

x y aNewField header
vtable pointer

code for PtSubClass’ samePlace()

code for sayHi()
PtSubclass vtable

Autumn 2015 20 Java vs. C

University of Washington

Implementing Programming Languages

 Many choices in how to implement programming models

 We’ve talked about compilation, can also interpret

 Interpreting languages has a long history
 Lisp, an early programming language, was interpreted

 Interpreters are still in common use:
 Python, Javascript, Ruby, Matlab, PHP, Perl, …

21 Autumn 2015 Java vs. C

University of Washington

An Interpreter is a Program

 Execute line by line in original source code

 Simpler/no compiler – less translation

 More transparent to debug – less translation

 Easier to run on different architectures – runs in a simulated
environment that exists only inside the interpreter process

 Slower and harder to optimize

 All errors at run time (there is no compile time!)

22 Autumn 2015 Java vs. C

University of Washington

Interpreted vs. Compiled in practice

 Really a continuum, a choice to be made
 More or less work done by interpreter/compiler

 Java programs are usually run by a Java virtual machine (JVM)
 JVMs interpret an intermediate language called Java bytecode

 Many JVMs compile bytecode to native machine code

 just-in-time (JIT) compilation

 Java is sometimes compiled ahead of time (AOT) like C

23

Interpreted

Compiled

Lisp

C

Java

Autumn 2015 Java vs. C

University of Washington

Compiling and Running Java

 The Java compiler converts Java into Java bytecodes

 Java bytecodes are stored in a .class file

 To run the Java compiler:
 javac Foo.java

 To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)

 For Java, this interpreter is called the Java Virtual Machine

 To run the Java virtual machine:
 java Foo

 This loads the contents of Foo.class and interprets the bytecodes

Autumn 2015 24 Java vs. C

Note: The Java virtual machine is different than the CSE VM running on VMWare

University of Washington

Virtual Machine Model

25

High-Level Language Program
(e.g. Java, C)

Virtual Machine Language
(e.g. Java bytecodes)

Native Machine Language
(e.g. x86, MIPS)

Bytecode
compiler
(e.g. javac Foo.java)

Virtual machine
(interpreter)
(e.g. java Foo)

Ahead-of-time
compiler

JIT
compiler

run time
compile time

Autumn 2015 Java vs. C

University of Washington

Java bytecode

 like assembly code for JVM,
but works on all JVMs:
hardware-independent

 typed (unlike ASM)

 strong JVM protections

26

variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other arguments to method

Other local variables

Autumn 2015 Java vs. C

University of Washington

JVM Operand Stack

27

mov 8(%ebp), %eax

mov 12(%ebp), %edx

add %edx, %eax

mov %eax, -8(%ebp)

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // pop top 2 elements from stack, add together, and

 // push result back onto stack

istore 3 // pop result and put it into third slot in table

No registers or
stack locations;
all operations use
operand stack.

‘i’ stands for integer,
‘a’ for reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, …

compiled to x86:

bytecode:

Holds pointer ‘this’

Other arguments to method

Other local variables

constant
pool

variable table
operand stack

0 1 2 3 4 n

machine:

Autumn 2015 Java vs. C

University of Washington

A Simple Java Method

28

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes

 // pop an element from top of stack, retrieve its

 // specified instance field and push it onto stack.

 // "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

0 1 4

aload_0 areturn getfield 00 05

00 05 B0 B4 2A In the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Autumn 2015 Java vs. C

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

University of Washington

Class File Format

 Every class in Java source code is compiled to its own class
file

 10 sections in the Java class file structure:
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

 Version of class file format: the minor and major versions of the class file

 Constant pool: set of constant values for the class

 Access flags: for example whether the class is abstract, static, final, etc.

 This class: The name of the current class

 Super class: The name of the super class

 Interfaces: Any interfaces in the class

 Fields: Any fields in the class

 Methods: Any methods in the class

 Attributes: Any attributes of the class (for example, name of source file, etc.)

 A .jar file collects together all of the class files needed for the
program, plus any additional resources (e.g. images)

29 Autumn 2015 Java vs. C

University of Washington

Disassembled
Java Bytecode

30

Compiled from Employee.java

class Employee extends java.lang.Object {

 public Employee(java.lang.String,int);

 public java.lang.String getEmployeeName();

 public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

 storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int getEmployeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

javac Employee.java

javap -c Employee

Autumn 2015 Java vs. C

University of Washington

Other languages for JVMs

 JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
 AspectJ, an aspect-oriented extension of Java

 ColdFusion, a scripting language compiled to Java

 Clojure, a functional Lisp dialect

 Groovy, a scripting language

 JavaFX Script, a scripting language for web apps

 JRuby, an implementation of Ruby

 Jython, an implementation of Python

 Rhino, an implementation of JavaScript

 Scala, an object-oriented and functional programming language

 And many others, even including C!

31 Autumn 2015 Java vs. C

University of Washington

Microsoft’s C# and .NET Framework
 C# has similar motivations as Java

 Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

32 Autumn 2015 Java vs. C

University of Washington

We made it!

33

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Java vs. C

