University of Washington

Memory & data

Roadmap Integers & floats

Machine code & C

¢ Java: x86 assembly
car *c = malloc(sizeof(car)); Car c = new Car () ; Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; c.setGals (17) ; Memory & caches
float mpg = get mpg(c) ; float mpg =
free(c) ; B c.getMPG () ; Processes

— ?z Virtual memory
Assembly get mpg: Memory allocation
language: pushq %rbp Java vs. C

movq %rsp, %rbp

popa %rbp

ret ‘$
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

Autumn 2015 Javavs. C 1

University of Washington

Java vs. C

m Reconnecting to Java

= Back to CSE143!

= But now you know a lot more about what really happens when we
execute programs

m We've learned about the following items in C; now we’ll see
what they look like for Java:
= Representation of data
= Pointers / references
= Casting
= Function / method calls

" Runtime environment
" Translation from high-level code to machine code

Autumn 2015 Javavs. C

University of Washington

Meta-point to this lecture

m None of the data representations we are going to talk about
are guaranteed by Java

m In fact, the language simply provides an abstraction
m We can't easily tell how things are really represented

m But it is important to understand an implementation of the
lower levels — useful in thinking about your program
= just like caching, etc.

Autumn 2015 Javavs. C 3

University of Washington

Data in Java

m Integers, floats, doubles, pointers —same as C

= Yes, Java has pointers — they are called ‘references’ — however, Java
references are much more constrained than C’s general pointers

Null is typically represented as 0
Characters and strings

Arrays

Objects

Autumn 2015 Javavs. C 4

University of Washington

Data in Java: Arrays

m Arrays
= Every element initialized to 0 or null
= Length specified in immutable field at start of array (int — 4 bytes)
= array.length returns value of this field
= Since it has this info, what can it do?

int array[5]; // C

int[] array = new int[5]; //Java

0O 4 20 24

Java 5100/00|/00|00]|00

Autumn 2015 Javavs. C 5

University of Washington

Data in Java: Arrays

m Arrays
= Every element initialized to 0 or null
= Length specified in immutable field at start of array (int — 4 bytes)
= array.length returns value of this field
= Every access triggers a bounds-check
= Code is added to ensure the index is within bounds
= Exception if out-of-bounds

int array[5]; //C Bounds-checking sounds slow, but:
// Java 1. Length field is likely in cache.
2. Compiler may store length field in
register for loops.
C P22 ??|??]|?? 3. Compiler may prove that some checks
0 4 20 24 are redundant.

int[] array = new int[5];

Java 5100/00|/00|00]|00

Autumn 2015 Javavs. C 6

University of Washington

Data in Java: Characters & Strings

m Characters and strings
= Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets
= String not bounded by a ‘\0’ (null character)
= Bounded by hidden length field at beginning of string

the string ‘CSE351’:

C: AsCll 43|53|45|33|35|31(\0
0 1 4 7 16

Java: Unicode 6 00]43|00|53]00|45]100133|]00135]00]31

Autumn 2015 Javavs. C 7

University of Washington

Data structures (objects) in Java

m Objects are always stored by reference, never stored “inline”.
" Include complex data types (arrays, other objects, etc.) using references

C | struct rec { Java | class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int[3];

struct rec *p; Rec p;

};
/ }

Example of array stored “inline”
ila Ef‘T’)y
ila B | 0 4 20

0 4 16 24 3 |int[3]

Autumn 2015 Javavs. C 8

Pointer/reference fields and variables

m InC, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct

= (*r).ais so common it becomes r->a

m InlJava, all non-primitive variables are references to objects

= We always use r.a notation
= But really follow reference to r with offset to a, just like C's r->a

struct rec *r = malloc(...); r = new Rec() ;
struct rec r2; r2 = new Rec();
r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;

r->p = &r2; r.p=r2;

Autumn 2015 Javavs. C 9

University of Washington

Pointers/References

m Pointers in C can point to any memory address

m References in Java can only point to [the starts of] objects
= And can only be dereferenced to access a field or element of that object

C| struct rec { Java| class Rec {
int i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
}; }
struct rec* r = malloc(..); Rec r = new Rec(); |
some fn(&(r->a[l])) //ptr some fn(r.a, 1) // ref, index
— r
r X \
: 1la P
ila p
0O 4 20
0O 4 16 24

3 |int[3]
Autumn 2015 Javavs. C 0 4 1 6 10

University of Washington

Casting in C (example from Lab 5)

m We can cast any pointer into any other pointer;
just look at the same bits differently

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next; Cast b into char

struct BlockInfo* prev; pointer so that
you can add byte

offset without

}i
typedef struct BlockInfo BlockInfo;

scaling
|
int x; Cast back into
BlockInfo *b; BlockiInfo pointer
BlockInfo *newBlock; SO you can use it

as BlockInfo struct

newBlock = (BlockInfo *) ((char *) b + x);
—0

Autumn 2015 Javavs. C 11

University of Washington

Type-safe casting in Java
m Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

class Object { class Vehicle { }
— int passengers;
} }

class Car extends Vehicle {
int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle();

Car cl new Car();

Boat bl new Boat() ;

Vehicle vl = new Car();

Vehicle v2 = vl;

Car c2 = new Boat()
Car c3 = new Vehicle();
Boat b2 = (Boat) v;

Car cd = (Car) v2;

Car c5 = (Car) bl;

Autumn 2015 Javavs. C 12

University of Washington

Type-safe casting in Java
m Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

class Object { class Vehicle { }
— int passengers;
} }

class Car extends Vehicle {
int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle() ;

Car cl = new Car();
Boat bl = new Boat():;
Vehicle vl = new Car(); // OK, everything needed for Vehicle
// is also in Car
Vehicle v2 = vl; // OK, vl is declared as type Vehicle
Car c2 = new Boat(); // Compiler error - Incompatible type - elements
// in Car that are not in Boat (classes are siblings)
Car c3 = new Vehicle() // Compiler error - Wrong direction; elements in Car
// not in Vehicle (wheels)
Boat b2 = (Boat) v; // Run-time error; Vehicle does not contain
// all elements in Boat (propellers) . -
Car cd = (Car) v2; // OK, v2 refers to a Car at runtime How is this
Car c5 = (Car) bil; // Compiler error - Incovertible types, implemented/

// bl is declared as type Boat enforced?

Autumn 2015 Javavs. C 13

University of Washington

Java objects

class Point { _—— fields
double x; <________————”—'_——_——_——

double y;

Point () { // constructor
x =0;

y = 0;
}

— method
boolean samePlace(Point p) { <— |
return (x == p.x) && (y == p.y)’

}

— creation
Point p = new Point() ; e————""——————————

Autumn 2015 Javavs. C 14

University of Washington

Java objects

P .

\ Point object

header vtable pointer % y
Point class vtable /° o
K} code for Point() code for samePlace ()
Point object
[|

header vtable pointer| ¥ Y

m vtable pointer : points to virtual method table

IH

= |ike a jump table for instance (“virtual”) methods plus other class info

= one table per class
m Object header : GC info, hashing info, lock info, etc. (no size — why?)

m When we call “new” : allocate space for object; zero/null fields;
run constructor

= compiler actually resolves constructor like a static method

Autumn 2015 Javavs. C 15

Java Methods

m Static methods are just like functions.

m Instance methods

= can refer to this;
= have an implicit first parameter for this; and

® can be overridden in subclasses.

m The code to run when calling an instance method (e.g.,
p.samePlace(q)) is chosen at run-time by lookup in the vtable.

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;

p->vtable = &Point vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l] (p, 9):

Autumn 2015 Javavs. C 16

University of Washington

Method dispatch

P .
\\ Point object
P vtable pointer % y
Point class vtable / —
¥ code for Point() code for samePlace()
Point object
[|
header vtable pointer| ¥ Y
Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;

p->vtable = &Point vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l] (p, 9):

Autumn 2015 Javavs. C 17

University of Washington

Subclassing

class PtSubClass extends Point({

int aNewField;

boolean samePlace (Point p2) {
return false;

}

void sayHi () {
System.out.println("hello") ;

}

}

m Where does “aNewField” go? At end of fields of Point

= Point fields are always in the same place, so Point code can run on
PtSubClass objects without modification.

m Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
" To override “samePlace”, write over old pointer
= Add new pointer at end of table for new method “sayHi”

Autumn 2015 Javavs. C 18

University of Washington

Subclassing

class PtSubClass extends Point({
int aNewField;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello") ;

}

) aNewField tacked on at end
PtSubclass object \
header|vtable X Y aNewField

‘&\\\\\\\\ﬁi constructor samePlace. sayHi .
vtable for PtSubCl}s/
not Poin . i
(int) / Pointer to code for sayHi

Pointer to old code for constructor

Pointer to new code for samePlace

Autumn 2015 Javavs. C 19

University of Washington

Dynamic dispatch

Point object

vtable pointer
header P X Y

Point vtable/ O ® >»| code for Point’s samePlace ()
PtSubclass object

k code for Point ()
vtable pointer

header 0 X Yy aNewField

PtSubclass vtable ‘\|\F —>»| code for sayHi ()
code for PtSubClass’ samePlace()
Java: C pseudo-translation:

Point p = ??7?; // works regardless of what p is
return p.samePlace(q) ; return p->vtable[l] (p, 9):

Autumn 2015 Javavs. C 20

University of Washington

Implementing Programming Languages

m Many choices in how to implement programming models
m We've talked about compilation, can also interpret
m Interpreting languages has a long history

= Lisp, an early programming language, was interpreted

m Interpreters are still in common use:
= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Autumn 2015 Javavs. C 21

An Interpreter is a Program

Execute line by line in original source code

Simpler/no compiler — less translation
More transparent to debug — less translation

Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

Slower and harder to optimize

m All errors at run time (there is no compile time!)

Autumn 2015 Javavs. C 22

University of Washington

Interpreted vs. Compiled in practice

m Really a continuum, a choice to be made Compiled
= More or less work done by interpreter/compiler

Interpreted

m Java programs are usually run by a Java virtual machine (JVM)

= JVMs interpret an intermediate language called Java bytecode

= Many JVMs compile bytecode to native machine code
= just-in-time (JIT) compilation
= Java is sometimes compiled ahead of time (AOT) like C

Autumn 2015 Javavs. C 23

University of Washington

Compiling and Running Java

m The Java compiler converts Java into Java bytecodes
m Java bytecodes are stored in a .class file
m To run the Java compiler:

" javac Foo.java

m To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)

m ForJava, this interpreter is called the Java Virtual Machine
m To run the Java virtual machine:

" java Foo

" This loads the contents of Foo . class and interprets the bytecodes

Note: The Java virtual machine is different than the CSE VM running on VMWare

Autumn 2015 Javavs. C 24

University of Washington

Virtual Machine Model

High-Level Language Program
(e.g. Java, C)

Bytec?de Ahead-of-time
compiler compiler
(e.g. javac Foo.jawva)

compile time
run time

Virtual Machine Language
(e.g. Java bytecodes)

Virtual machine JIT
(interpreter) compiler

(e.g. java Foo)
Native Machine Language
(e.g. x86, MIPS)

Autumn 2015 Javavs. C 25

University of Washington

Java bytecode

Holds pointer ‘this’

m like assembly code for JVM,

but works on all JVMs: Other arguments to method
hardware-independent Other local variables

m typed (unlike ASM)

m strong JVM protections ol1l213lal n

variable table

operand stack

constant
pool

Autumn 2015 Javavs. C 26

University of Washington

Holds pointer ‘this’
.'VM Ope ra nd StaCk Other arguments to method

Other local variables

machine:

ola]2f3]a|_____ n
variable table

operand stack

‘i’ stands for integer,
‘a’ for reference, T

‘b’ for byte,
‘c’ for char, constant

‘d’ for double, ... pool
N\
bytECOde: iload 1 // push 15t argument from table onto stack
iload 2 // push 27°¢ argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
// push result back onto stack
istore 3 // pop result and put it into third slot in table

No registers or mov 8 (%ebp), %eax
. . . 12
stack locations; complled to x86: | ™V (%ebp) , %edx

all operations use add %edx, $eax
operand stack. mov %eax, -8(%ebp)

Autumn 2015 Javavs. C 27

University of Washington

A Simple Java Method

Method java.lang.String getEmployeeName ()

0 aload O // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes
// pop an element from top of stack, retrieve its
// specified instance field and push it onto stack.
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

aload 0 getfield 00

05 areturn

In the .class file: [2a|B4|00|05|BO

http://en.wikipedia.org/wiki/lJava bytecode instruction listings

Javavs. C

Autumn 2015

28

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

University of Washington

Class File Format

m Every class in Java source code is compiled to its own class
file
m 10 sections in the Java class file structure:
= Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: the minor and major versions of the class file
= Constant pool: set of constant values for the class
= Access flags: for example whether the class is abstract, static, final, etc.
® This class: The name of the current class
= Super class: The name of the super class
" Interfaces: Any interfaces in the class
= Fields: Any fields in the class

= Methods: Any methods in the class
= Attributes: Any attributes of the class (for example, name of source file, etc.)

m A .jarfile collects together all of the class files needed for the
program, plus any additional resources (e.g. images)

Autumn 2015 Javavs. C 29

University of Washington

Compiled from Employee.java
D i Sa sse m b I e d class Employee extends java.lang.Object {
public Employee (java.lang.String,int) ;
public java.lang.String getEmployeeName () ;

Java BytECOde public int getEmployeeNumber () ;

Method Employee (java.lang.String,int)
0 aload 0

1 invokespecial #3 <Method java.lang.Object()>
4 aload 0
5
6

e

aload 1

putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>

javac Employee.java 14 aload 0

javap -c Employee 15 aload_ 1
16 iload 2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName ()

0 aload 0

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload 0

1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)

Autumn 2015 Java vs. C 30

University of Washington

Other languages for JVMs

m JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect), an aspect-oriented extension of Java
® ColdFusion, a scripting language compiled to Java
= Clojure, a functional Lisp dialect
= Groovy, a scripting language
= JavaFX Script, a scripting language for web apps
= JRuby, an implementation of Ruby
= Jython, an implementation of Python
= Rhino, an implementation of JavaScript
= Scala, an object-oriented and functional programming language
= And many others, even including C!

Autumn 2015 Javavs. C 31

University of Washington

Microsoft’s C# and .NET Framework

m C# has similar motivations as Java

m Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

C# VB.NET J#
code code code
Compiler Compiler Compiler

— | —

pemmnens Commen Language Infrastructure ------- E

"

NET compatible languages compile to a

Comman second platform-neutral language called
InLt-:-rr-'-cd ate Commaon Intermediate Language (CIL).
anguage
Common The platform-specific Common Language
Lan guage Runtime (CLR) compiles CIL to machine-
Elnhee readable code that can be executed on the
current platform,
01001100101011
11010101100110

Autumn 2015 e Javavs.Cc 32

| Memory & data
We made It ° Integers & floats

Machine code & C

¢ Java: x86 assembly
car *c = malloc(sizeof(car)); Car c = new Car () ; Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; c.setGals (17) ; Memory & caches
float mpg = get mpg(c) ; float mpg =
free(c) ; B c.getMPG () ; Processes

Y / Virtual memory
Assembly get mpg: Memory allocation
language: pushq %rbp Java vs. C

movq %rsp, %rbp

popgq Srbp

ret $
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

Autumn 2015 Javavs. C 33

