
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Java vs. C

University of Washington

Java vs. C

 Reconnecting to Java
 Back to CSE143!

 But now you know a lot more about what really happens when we
execute programs

 We’ve learned about the following items in C; now we’ll see
what they look like for Java:
 Representation of data

 Pointers / references

 Casting

 Function / method calls

 Runtime environment

 Translation from high-level code to machine code

2 Autumn 2015 Java vs. C

University of Washington

Meta-point to this lecture

 None of the data representations we are going to talk about
are guaranteed by Java

 In fact, the language simply provides an abstraction

 We can't easily tell how things are really represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program
 just like caching, etc.

Java vs. C Autumn 2015 3

University of Washington

Data in Java

 Integers, floats, doubles, pointers – same as C
 Yes, Java has pointers – they are called ‘references’ – however, Java

references are much more constrained than C’s general pointers

 Null is typically represented as 0

 Characters and strings

 Arrays

 Objects

Java vs. C Autumn 2015 4

University of Washington

Data in Java: Arrays
 Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4 bytes)

 array.length returns value of this field

 Since it has this info, what can it do?

int array[5]; // C

int[] array = new int[5]; // Java

5 00 00 00 00 00 Java

0 4 20

C

24

?? ?? ?? ?? ??

Java vs. C Autumn 2015 5

University of Washington

Data in Java: Arrays
 Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4 bytes)

 array.length returns value of this field

 Every access triggers a bounds-check

 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

int array[5]; // C

int[] array = new int[5]; // Java

5 00 00 00 00 00 Java

0 4 20

C

24

?? ?? ?? ?? ??

Java vs. C

Bounds-checking sounds slow, but:
1. Length field is likely in cache.
2. Compiler may store length field in

register for loops.
3. Compiler may prove that some checks

are redundant.

Autumn 2015 6

University of Washington

Data in Java: Characters & Strings

 Characters and strings
 Two-byte Unicode instead of ASCII

 Represents most of the world’s alphabets

 String not bounded by a ‘\0’ (null character)

 Bounded by hidden length field at beginning of string

the string ‘CSE351’:

43 \0

0 1 4 16

53 45 33 35 31

6 00 43 00 53 00 45 00 33 00 35 00 31

7

C: ASCII

Java: Unicode

Java vs. C Autumn 2015 7

University of Washington

Data structures (objects) in Java

 Objects are always stored by reference, never stored “inline”.
 Include complex data types (arrays, other objects, etc.) using references

C struct rec {

 int i;

 int a[3];

 struct rec *p;

};

Java class Rec {

 int i;

 int[] a = new int[3];

 Rec p;

…

}

i a p

0 4 16 24

i a p

0 4 20 12

int[3]

4 16

3

0

Java vs. C Autumn 2015 8

Example of array stored “inline”

University of Washington

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like C’s r->a

Java vs. C

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

Autumn 2015 9

University of Washington

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 And can only be dereferenced to access a field or element of that object

C struct rec {
 int i;

 int a[3];

 struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])) //ptr



Java class Rec {
 int i;

 int[] a = new int[3];

 Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1) // ref, index

i a p

0 4 16 24

Java vs. C

r
r

Autumn 2015 10

i a p

0 4 20 12

int[3]

4 16

3

0

University of Washington

s n

0

p

8 16 24

Casting in C (example from Lab 5)
 We can cast any pointer into any other pointer;

just look at the same bits differently

 struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

…

int x;

BlockInfo *b;

BlockInfo *newBlock;

…

newBlock = (BlockInfo *) ((char *) b + x);

…

Cast b into char
pointer so that
you can add byte
offset without
scaling

Cast back into
BlockInfo pointer
so you can use it
as BlockInfo struct

x

s p n

Java vs. C Autumn 2015 11

University of Washington

Type-safe casting in Java
 Can only cast compatible object references

// Vehicle is a super class of Boat and Car, which are siblings

Vehicle v = new Vehicle();

Car c1 = new Car();

Boat b1 = new Boat();

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

class Object {

 …

}

Java vs. C Autumn 2015 12

University of Washington

 Can only cast compatible object references

// Vehicle is a super class of Boat and Car, which are siblings

Vehicle v = new Vehicle();

Car c1 = new Car();

Boat b1 = new Boat();

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

// OK, everything needed for Vehicle

// is also in Car

// OK, v1 is declared as type Vehicle

// Compiler error - Incompatible type – elements

// in Car that are not in Boat (classes are siblings)

// Compiler error - Wrong direction; elements in Car

// not in Vehicle (wheels)

// Run-time error; Vehicle does not contain

// all elements in Boat (propellers)

// OK, v2 refers to a Car at runtime

// Compiler error - Incovertible types,

// b1 is declared as type Boat

Type-safe casting in Java

class Vehicle {

 int passengers;

}

class Boat extends Vehicle {

 int propellers;

}

class Car extends Vehicle {

 int wheels;

}

class Object {

 …

}

Java vs. C Autumn 2015 13

How is this
implemented/
 enforced?

University of Washington

Java objects

14

class Point {

 double x;

 double y;

 Point() {

 x = 0;

 y = 0;

 }

 boolean samePlace(Point p) {

 return (x == p.x) && (y == p.y);

 }

}

…

Point p = new Point();

…

constructor

fields

method

creation

Autumn 2015 Java vs. C

University of Washington

Java objects

 vtable pointer : points to virtual method table
 like a jump table for instance (“virtual”) methods plus other class info

 one table per class

 Object header : GC info, hashing info, lock info, etc. (no size – why?)

 When we call “new” : allocate space for object; zero/null fields;
run constructor
 compiler actually resolves constructor like a static method

15 Autumn 2015 Java vs. C

x y

p

code for Point() code for samePlace()

Point class vtable

header

x y

q

header

Point object

Point object
vtable pointer

vtable pointer

University of Washington

Java Methods

 Static methods are just like functions.

 Instance methods
 can refer to this;

 have an implicit first parameter for this; and

 can be overridden in subclasses.

 The code to run when calling an instance method (e.g.,
p.samePlace(q)) is chosen at run-time by lookup in the vtable.

16

Point p = new Point();

return p.samePlace(q);

Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

return p->vtable[1](p, q);

Java: C pseudo-translation:

Autumn 2015 Java vs. C

University of Washington

Method dispatch

Point p = new Point();

return p.samePlace(q);

Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

return p->vtable[1](p, q);

Java: C pseudo-translation:

Autumn 2015 17 Java vs. C

x y

p

code for Point() code for samePlace()

Point class vtable

header

x y

q

header

Point object

Point object
vtable pointer

vtable pointer

University of Washington

Subclassing

 Where does “aNewField” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on

PtSubClass objects without modification.

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, write over old pointer

 Add new pointer at end of table for new method “sayHi”

class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

Java vs. C Autumn 2015 18

University of Washington

Subclassing
class PtSubClass extends Point{

 int aNewField;

 boolean samePlace(Point p2) {

 return false;

 }

 void sayHi() {

 System.out.println("hello");

 }

 }

constructor samePlace

x vtable y aNewField

sayHi

vtable for PtSubClass
(not Point)

Pointer to new code for samePlace
Pointer to old code for constructor

aNewField tacked on at end

Java vs. C Autumn 2015 19

Pointer to code for sayHi

PtSubclass object

header

University of Washington

Dynamic dispatch

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for Point()

code for Point’s samePlace()

PtSubclass object

Point object

Point vtable

x y header
vtable pointer

x y aNewField header
vtable pointer

code for PtSubClass’ samePlace()

code for sayHi()
PtSubclass vtable

Autumn 2015 20 Java vs. C

University of Washington

Implementing Programming Languages

 Many choices in how to implement programming models

 We’ve talked about compilation, can also interpret

 Interpreting languages has a long history
 Lisp, an early programming language, was interpreted

 Interpreters are still in common use:
 Python, Javascript, Ruby, Matlab, PHP, Perl, …

21 Autumn 2015 Java vs. C

University of Washington

An Interpreter is a Program

 Execute line by line in original source code

 Simpler/no compiler – less translation

 More transparent to debug – less translation

 Easier to run on different architectures – runs in a simulated
environment that exists only inside the interpreter process

 Slower and harder to optimize

 All errors at run time (there is no compile time!)

22 Autumn 2015 Java vs. C

University of Washington

Interpreted vs. Compiled in practice

 Really a continuum, a choice to be made
 More or less work done by interpreter/compiler

 Java programs are usually run by a Java virtual machine (JVM)
 JVMs interpret an intermediate language called Java bytecode

 Many JVMs compile bytecode to native machine code

 just-in-time (JIT) compilation

 Java is sometimes compiled ahead of time (AOT) like C

23

Interpreted

Compiled

Lisp

C

Java

Autumn 2015 Java vs. C

University of Washington

Compiling and Running Java

 The Java compiler converts Java into Java bytecodes

 Java bytecodes are stored in a .class file

 To run the Java compiler:
 javac Foo.java

 To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)

 For Java, this interpreter is called the Java Virtual Machine

 To run the Java virtual machine:
 java Foo

 This loads the contents of Foo.class and interprets the bytecodes

Autumn 2015 24 Java vs. C

Note: The Java virtual machine is different than the CSE VM running on VMWare

University of Washington

Virtual Machine Model

25

High-Level Language Program
(e.g. Java, C)

Virtual Machine Language
(e.g. Java bytecodes)

Native Machine Language
(e.g. x86, MIPS)

Bytecode
compiler
(e.g. javac Foo.java)

Virtual machine
(interpreter)
(e.g. java Foo)

Ahead-of-time
compiler

JIT
compiler

run time
compile time

Autumn 2015 Java vs. C

University of Washington

Java bytecode

 like assembly code for JVM,
but works on all JVMs:
hardware-independent

 typed (unlike ASM)

 strong JVM protections

26

variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other arguments to method

Other local variables

Autumn 2015 Java vs. C

University of Washington

JVM Operand Stack

27

mov 8(%ebp), %eax

mov 12(%ebp), %edx

add %edx, %eax

mov %eax, -8(%ebp)

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // pop top 2 elements from stack, add together, and

 // push result back onto stack

istore 3 // pop result and put it into third slot in table

No registers or
stack locations;
all operations use
operand stack.

‘i’ stands for integer,
‘a’ for reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, …

compiled to x86:

bytecode:

Holds pointer ‘this’

Other arguments to method

Other local variables

constant
pool

variable table
operand stack

0 1 2 3 4 n

machine:

Autumn 2015 Java vs. C

University of Washington

A Simple Java Method

28

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes

 // pop an element from top of stack, retrieve its

 // specified instance field and push it onto stack.

 // "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

0 1 4

aload_0 areturn getfield 00 05

00 05 B0 B4 2A In the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Autumn 2015 Java vs. C

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

University of Washington

Class File Format

 Every class in Java source code is compiled to its own class
file

 10 sections in the Java class file structure:
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

 Version of class file format: the minor and major versions of the class file

 Constant pool: set of constant values for the class

 Access flags: for example whether the class is abstract, static, final, etc.

 This class: The name of the current class

 Super class: The name of the super class

 Interfaces: Any interfaces in the class

 Fields: Any fields in the class

 Methods: Any methods in the class

 Attributes: Any attributes of the class (for example, name of source file, etc.)

 A .jar file collects together all of the class files needed for the
program, plus any additional resources (e.g. images)

29 Autumn 2015 Java vs. C

University of Washington

Disassembled
Java Bytecode

30

Compiled from Employee.java

class Employee extends java.lang.Object {

 public Employee(java.lang.String,int);

 public java.lang.String getEmployeeName();

 public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

 storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int getEmployeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

javac Employee.java

javap -c Employee

Autumn 2015 Java vs. C

University of Washington

Other languages for JVMs

 JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
 AspectJ, an aspect-oriented extension of Java

 ColdFusion, a scripting language compiled to Java

 Clojure, a functional Lisp dialect

 Groovy, a scripting language

 JavaFX Script, a scripting language for web apps

 JRuby, an implementation of Ruby

 Jython, an implementation of Python

 Rhino, an implementation of JavaScript

 Scala, an object-oriented and functional programming language

 And many others, even including C!

31 Autumn 2015 Java vs. C

University of Washington

Microsoft’s C# and .NET Framework
 C# has similar motivations as Java

 Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

32 Autumn 2015 Java vs. C

University of Washington

We made it!

33

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Java vs. C

