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Memory & data

Roadmap Integers & floats

Machine code & C

¢ Java: x86 assembly
car *c = malloc(sizeof(car)); Car c = new Car () ; Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; c.setGals (17) ; Memory & caches
float mpg = get mpg(c) ; float mpg =
free(c) ; B c.getMPG () ; Processes

— ?z Virtual memory
Assembly get mpg: Memory allocation
language: pushq  %rbp Java vs. C

movq %rsp, %rbp

popa %rbp

ret ‘$
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:
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Java vs. C

m Reconnecting to Java

= Back to CSE143!

= But now you know a lot more about what really happens when we
execute programs

m We've learned about the following items in C; now we’ll see
what they look like for Java:
= Representation of data
= Pointers / references
= Casting
= Function / method calls

" Runtime environment
" Translation from high-level code to machine code
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Meta-point to this lecture

m None of the data representations we are going to talk about
are guaranteed by Java

m In fact, the language simply provides an abstraction
m We can't easily tell how things are really represented

m But it is important to understand an implementation of the
lower levels — useful in thinking about your program
= just like caching, etc.
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Data in Java

m Integers, floats, doubles, pointers —same as C

= Yes, Java has pointers — they are called ‘references’ — however, Java
references are much more constrained than C’s general pointers

Null is typically represented as 0
Characters and strings

Arrays

Objects
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Data in Java: Arrays

m Arrays
= Every element initialized to 0 or null
= Length specified in immutable field at start of array (int — 4 bytes)
= array.length returns value of this field
= Since it has this info, what can it do?

int array[5]; // C

int[] array = new int[5]; //Java

0O 4 20 24

Java 5100/00|/00|00]|00
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Data in Java: Arrays

m Arrays
= Every element initialized to 0 or null
= Length specified in immutable field at start of array (int — 4 bytes)
= array.length returns value of this field
= Every access triggers a bounds-check
= Code is added to ensure the index is within bounds
= Exception if out-of-bounds

int array[5]; //C Bounds-checking sounds slow, but:
// Java 1. Length field is likely in cache.
2. Compiler may store length field in
register for loops.
C P22 ??|??]|?? 3. Compiler may prove that some checks
0 4 20 24 are redundant.

int[] array = new int[5];

Java 5100/00|/00|00]|00

Autumn 2015 Javavs. C 6



University of Washington

Data in Java: Characters & Strings

m Characters and strings
= Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets
= String not bounded by a ‘\0’ (null character)
= Bounded by hidden length field at beginning of string

the string ‘CSE351’:

C: AsCll 43|53|45|33|35|31(\0
0 1 4 7 16

Java: Unicode 6 00]43|00|53]00|45]100133|]00135]00]31
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Data structures (objects) in Java

m Objects are always stored by reference, never stored “inline”.
" Include complex data types (arrays, other objects, etc.) using references

C | struct rec { Java | class Rec {
int 1i; int 1i;
int a[3]; int[] a = new int[3];

struct rec *p; Rec p;

};
/ }

Example of array stored “inline”
ila Ef‘T’)y
ila B | 0 4 20

0 4 16 24 3 |int[3]
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Pointer/reference fields and variables

m InC, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct

= (*r).ais so common it becomes r->a

m InlJava, all non-primitive variables are references to objects

= We always use r.a notation
= But really follow reference to r with offset to a, just like C's r->a

struct rec *r = malloc(...); r = new Rec() ;
struct rec r2; r2 = new Rec();
r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;

r->p = &r2; r.p=r2;
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Pointers/References

m Pointers in C can point to any memory address

m References in Java can only point to [the starts of] objects
= And can only be dereferenced to access a field or element of that object

C| struct rec { Java| class Rec {
int i; int 1i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
}; }
struct rec* r = malloc(..); Rec r = new Rec(); |
some fn(&(r->a[l])) //ptr some fn(r.a, 1) // ref, index
— r
r X \
: 1la P
ila p
0O 4 20
0O 4 16 24

3 |int[3]
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Casting in C (example from Lab 5)

m We can cast any pointer into any other pointer;
just look at the same bits differently

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next; Cast b into char

struct BlockInfo* prev; pointer so that
you can add byte

offset without

}i
typedef struct BlockInfo BlockInfo;

scaling
|
int x; Cast back into
BlockInfo *b; BlockiInfo pointer
BlockInfo *newBlock; SO you can use it

as BlockInfo struct

newBlock = (BlockInfo *) ( (char *) b + x );
—0
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Type-safe casting in Java
m Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

class Object { class Vehicle { }
— int passengers;
} }

class Car extends Vehicle {
int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle();

Car cl new Car();

Boat bl new Boat() ;

Vehicle vl = new Car();

Vehicle v2 = vl;

Car c2 = new Boat()
Car c3 = new Vehicle();
Boat b2 = (Boat) v;

Car cd = (Car) v2;

Car c5 = (Car) bl;
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Type-safe casting in Java
m Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

class Object { class Vehicle { }
— int passengers;
} }

class Car extends Vehicle {
int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle() ;

Car cl = new Car();
Boat bl = new Boat():;
Vehicle vl = new Car(); // OK, everything needed for Vehicle
// is also in Car
Vehicle v2 = vl; // OK, vl is declared as type Vehicle
Car c2 = new Boat(); // Compiler error - Incompatible type - elements
// in Car that are not in Boat (classes are siblings)
Car c3 = new Vehicle() // Compiler error - Wrong direction; elements in Car
// not in Vehicle (wheels)
Boat b2 = (Boat) v; // Run-time error; Vehicle does not contain
// all elements in Boat (propellers) . -
Car cd = (Car) v2; // OK, v2 refers to a Car at runtime How is this
Car c5 = (Car) bil; // Compiler error - Incovertible types, implemented/

// bl is declared as type Boat enforced?
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Java objects

class Point { _—— fields
double x; <________————”—'_——_——_——

double y;

Point () { // constructor
x =0;

y = 0;
}

— method
boolean samePlace(Point p) { <— |
return (x == p.x) && (y == p.y)’

}

— creation
Point p = new Point() ; e————""——————————
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Java objects

P .

\ Point object

header vtable pointer % y
Point class vtable /° o
K} code for Point() code for samePlace ()
Point object
[ |

header vtable pointer| ¥ Y

m vtable pointer : points to virtual method table

IH

= |ike a jump table for instance (“virtual”) methods plus other class info

= one table per class
m Object header : GC info, hashing info, lock info, etc. (no size — why?)

m When we call “new” : allocate space for object; zero/null fields;
run constructor

= compiler actually resolves constructor like a static method
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Java Methods

m Static methods are just like functions.

m Instance methods

= can refer to this;
= have an implicit first parameter for this; and

® can be overridden in subclasses.

m The code to run when calling an instance method (e.g.,
p.samePlace(q)) is chosen at run-time by lookup in the vtable.

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;

p->vtable = &Point vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l] (p, 9):
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Method dispatch

P .
\\ Point object
P vtable pointer % y
Point class vtable / —
¥ code for Point() code for samePlace()
Point object
[ |
header vtable pointer| ¥ Y
Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;

p->vtable = &Point vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l] (p, 9):
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Subclassing

class PtSubClass extends Point({

int aNewField;

boolean samePlace (Point p2) {
return false;

}

void sayHi () {
System.out.println("hello") ;

}

}

m Where does “aNewField” go? At end of fields of Point

= Point fields are always in the same place, so Point code can run on
PtSubClass objects without modification.

m Where does pointer to code for two new methods go?
= No constructor, so use default Point constructor
" To override “samePlace”, write over old pointer
= Add new pointer at end of table for new method “sayHi”
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Subclassing

class PtSubClass extends Point({
int aNewField;
boolean samePlace (Point p2) {
return false;
}
void sayHi () {
System.out.println("hello") ;

}

) aNewField tacked on at end
PtSubclass object \
header|vtable X Y aNewField

‘&\\\\\\\\ﬁi constructor samePlace. sayHi .
vtable for PtSubCl}s/
not Poin . i
( int) / Pointer to code for sayHi

Pointer to old code for constructor

Pointer to new code for samePlace
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Dynamic dispatch

Point object

vtable pointer
header P X Y

Point vtable/ O ® >»| code for Point’s samePlace ()
PtSubclass object

k code for Point ()
vtable pointer

header 0 X Yy aNewField

PtSubclass vtable ‘\|\F —>»| code for sayHi ()
code for PtSubClass’ samePlace()
Java: C pseudo-translation:

Point p = ??7?; // works regardless of what p is
return p.samePlace(q) ; return p->vtable[l] (p, 9):

Autumn 2015 Javavs. C 20




University of Washington

Implementing Programming Languages

m Many choices in how to implement programming models
m We've talked about compilation, can also interpret
m Interpreting languages has a long history

= Lisp, an early programming language, was interpreted

m Interpreters are still in common use:
= Python, Javascript, Ruby, Matlab, PHP, Perl, ...
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An Interpreter is a Program

Execute line by line in original source code

Simpler/no compiler — less translation
More transparent to debug — less translation

Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

Slower and harder to optimize

m All errors at run time (there is no compile time!)

Autumn 2015 Javavs. C 22



University of Washington

Interpreted vs. Compiled in practice

m Really a continuum, a choice to be made Compiled
= More or less work done by interpreter/compiler

Interpreted

m Java programs are usually run by a Java virtual machine (JVM)

= JVMs interpret an intermediate language called Java bytecode

= Many JVMs compile bytecode to native machine code
= just-in-time (JIT) compilation
= Java is sometimes compiled ahead of time (AOT) like C
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Compiling and Running Java

m The Java compiler converts Java into Java bytecodes
m Java bytecodes are stored in a .class file
m To run the Java compiler:

" javac Foo.java

m To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)

m ForJava, this interpreter is called the Java Virtual Machine
m To run the Java virtual machine:

" java Foo

" This loads the contents of Foo . class and interprets the bytecodes

Note: The Java virtual machine is different than the CSE VM running on VMWare
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Virtual Machine Model

High-Level Language Program
(e.g. Java, C)

Bytec?de Ahead-of-time
compiler compiler
(e.g. javac Foo.jawva)

compile time
run time

Virtual Machine Language
(e.g. Java bytecodes)

Virtual machine JIT
(interpreter) compiler

(e.g. java Foo)
Native Machine Language
(e.g. x86, MIPS)
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Java bytecode

Holds pointer ‘this’

m like assembly code for JVM,

but works on all JVMs: Other arguments to method
hardware-independent Other local variables

m typed (unlike ASM)

m strong JVM protections ol1l213lal n

variable table

operand stack

constant
pool
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Holds pointer ‘this’
.'VM Ope ra nd StaCk Other arguments to method

Other local variables

machine:

ola]2f3]a|_____ n
variable table

operand stack

‘i’ stands for integer,
‘a’ for reference, T

‘b’ for byte,
‘c’ for char, constant

‘d’ for double, ... pool
N\
bytECOde: iload 1 // push 15t argument from table onto stack
iload 2 // push 27°¢ argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
// push result back onto stack
istore 3 // pop result and put it into third slot in table

No registers or mov 8 (%ebp), %eax
. . . 12
stack locations; complled to x86: | ™V (%ebp) , %edx

all operations use add %edx, $eax
operand stack. mov %eax,  -8(%ebp)
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A Simple Java Method

Method java.lang.String getEmployeeName ()

0 aload O // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes
// pop an element from top of stack, retrieve its
// specified instance field and push it onto stack.
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

aload 0 getfield 00

05 areturn

In the .class file: [2a|B4|00|05|BO

http://en.wikipedia.org/wiki/lJava bytecode instruction listings

Javavs. C
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Class File Format

m Every class in Java source code is compiled to its own class
file
m 10 sections in the Java class file structure:
= Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: the minor and major versions of the class file
= Constant pool: set of constant values for the class
= Access flags: for example whether the class is abstract, static, final, etc.
® This class: The name of the current class
= Super class: The name of the super class
" Interfaces: Any interfaces in the class
= Fields: Any fields in the class

= Methods: Any methods in the class
= Attributes: Any attributes of the class (for example, name of source file, etc.)

m A .jarfile collects together all of the class files needed for the
program, plus any additional resources (e.g. images)
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Compiled from Employee.java
D i Sa sse m b I e d class Employee extends java.lang.Object {
public Employee (java.lang.String,int) ;
public java.lang.String getEmployeeName () ;

Java BytECOde public int getEmployeeNumber () ;

Method Employee (java.lang.String,int)
0 aload 0

1 invokespecial #3 <Method java.lang.Object()>
4 aload 0
5
6

e

aload 1

putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>

javac Employee.java 14 aload 0

javap -c Employee 15 aload_ 1
16 iload 2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName ()

0 aload 0

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload 0

1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)
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Other languages for JVMs

m JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect), an aspect-oriented extension of Java
® ColdFusion, a scripting language compiled to Java
= Clojure, a functional Lisp dialect
= Groovy, a scripting language
= JavaFX Script, a scripting language for web apps
= JRuby, an implementation of Ruby
= Jython, an implementation of Python
= Rhino, an implementation of JavaScript
= Scala, an object-oriented and functional programming language
= And many others, even including C!
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Microsoft’s C# and .NET Framework

m C# has similar motivations as Java

m Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

C# VB.NET J#
code code code
Compiler Compiler Compiler

— | —

pemmnens Commen Language Infrastructure ------- E

"

NET compatible languages compile to a

Comman second platform-neutral language called
InLt-:-rr-'-cd ate Commaon Intermediate Language (CIL).
anguage
Common The platform-specific Common Language
Lan guage Runtime (CLR) compiles CIL to machine-
Elnhee readable code that can be executed on the
current platform,
01001100101011
11010101100110
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| Memory & data
We made It ° Integers & floats

Machine code & C

¢ Java: x86 assembly
car *c = malloc(sizeof(car)); Car c = new Car () ; Procedures & stacks
c->miles = 100; c.setMiles (100) ; Arrays & structs
c->gals = 17; c.setGals (17) ; Memory & caches
float mpg = get mpg(c) ; float mpg =
free(c) ; B c.getMPG () ; Processes

Y / Virtual memory
Assembly get mpg: Memory allocation
language: pushq  %rbp Java vs. C

movq %rsp, %rbp

popgq Srbp

ret $
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:
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