
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Data & addressing
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Processes

University of Washington

Processes – another important abstraction

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

2 Autumn 2015 Processes

University of Washington

Control Flow

 So far, we’ve seen how the flow of control changes as a single
program executes

 But a single CPU executes more than one program at a time –
we also need to understand how control flows across the many
components of the system

 For now we will assume there is only ONE CPU

 Exceptional control flow is the basic mechanism used for:
 Transferring control between processes and OS

 Handling I/O and virtual memory within the OS

 Implementing multi-process applications like shells and web servers

 Implementing concurrency

3 Autumn 2015 Processes

University of Washington

Control Flow

 Processors do only one thing:
 From startup to shutdown, a CPU simply reads and executes

(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

4

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Physical control flow

time

Autumn 2015 Processes

University of Washington

Altering the Control Flow
 Up to now: two ways to change control flow:

 Jumps (conditional and unconditional)

 Call and return

Both react to changes in program state

 Processor also needs to react to changes in system state
 user hits “Ctrl-C” at the keyboard

 user clicks on a different application’s window on the screen

 data arrives from a disk or a network adapter

 instruction divides by zero

 system timer expires

Can jumps and procedure calls achieve this?
 Jumps and calls are not sufficient – the system needs mechanisms for

“exceptional” control flow!

5 Autumn 2015 Processes

University of Washington

Exceptional Control Flow
 Exists at all levels of a computer system

 Low level mechanisms
 Exceptions

 change in processor’s control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

 Implemented using a combination of hardware and OS software

 Higher level mechanisms
 Process context switch

 Implemented by OS software and hardware timer

 Signals – you’ll hear about these in CSE451 and CSE/EE 466 474

 Implemented by OS software

We’ll talk about exceptions and process context switch

6 Autumn 2015 Processes

University of Washington

Processes

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

7 Autumn 2015 Processes

University of Washington

 An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e., change in processor state)

 Kernel is the memory-resident part of the OS

 Examples of events:
div by 0, page fault, I/O request completes, Ctrl-C

 How does the system know where to jump to in the OS?

User Code OS Kernel Code

exception
exception processing
by exception
handler, then:
 • return to current_instr, OR
• return to next_instr, OR
•abort

event current_instr
next_instr

8

Exceptions

Autumn 2015 Processes

University of Washington

0
1

2
...

n-1

Exception Table: a jump table for exceptions

9

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

Also called: Interrupt Vector Table
Autumn 2015 Processes

University of Washington

Exception Table (Excerpt)

10

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined Interrupt or trap

Autumn 2015 Processes

University of Washington

Types of Exceptions

 Asynchronous Exceptions (Interrupts) - Caused by events
external to the processor

 Synchronous Exceptions – Caused by events that occur as a
result of executing an instruction
 Traps - Intentional

 Faults - Unintentional

 Aborts - Unintentional

Autumn 2015 11 Processes

University of Washington

Processes

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

12 Autumn 2015 Processes

University of Washington

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor
 Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

 After interrupt handler runs, the handler returns to “next” instruction

 Examples:
 I/O interrupts

 hitting Ctrl-C on the keyboard

 clicking a mouse button or tapping a touchscreen

 arrival of a packet from a network

 arrival of data from a disk

 Timer interrupt

 Every few ms, an external timer chip triggers an interrupt

 Used by the OS kernel to take back control from user programs

13 Autumn 2015 Processes

University of Washington

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional: transfer control to OS to perform some function

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), segment protection faults
(unrecoverable), integer divide-by-zero exceptions (unrecoverable)

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 Unintentional and unrecoverable

 Examples: parity error, machine check (hardware failure detected)

 Aborts current program
14 Autumn 2015 Processes

University of Washington

System Calls

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

 Each x86-64 system call has a unique ID number

 Examples:

Autumn 2015 Processes 15

University of Washington

Traps: System Call Example: Opening File
 User calls: open(filename, options)

 Calls __open function, which invokes system call instruction syscall

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall #2

e5d7e: 0f 05 syscall # Return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code OS Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

Autumn 2015 Processes 16

University of Washington

 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page fault handler must load page into physical memory

 Returns to faulting instruction: mov is executed again!

 Successful on second try

int a[1000];

main ()

{

 a[500] = 13;

}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault

Create page and
load into memory returns

movl

17

Fault Example: Page Fault

Autumn 2015 Processes

University of Washington

 Page fault handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

 a[5000] = 13;

}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

18

Fault Example: Invalid Memory Reference

Autumn 2015 Processes

University of Washington

Summary

 Exceptions
 Events that require non-standard control flow

 Generated externally (interrupts) or internally (traps and faults)

 After an exception is handled, one of three things may happen:

 Re-execute the current instruction

 Resume execution with the next instruction

 Abort the process that caused the exception

19 Autumn 2015 Processes

University of Washington

Processes

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

20 Autumn 2015 Processes

University of Washington

What is a process?

 Processes are another abstraction in our computer system
 provided by the OS

 OS uses a data structure to represent each process

 provides an interface between the program and the underlying
hardware (CPU + memory)

 What do processes have to do with exceptional control flow?
 Exceptional control flow is the mechanism that the OS uses to enable

multiple processes to run on the same system.

 What is the difference between:
 a processor? a program? a process?

21 Autumn 2015 Processes

University of Washington

Processes

 Definition: A process is an instance of a running
program.
 One of the most profound ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key
abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU

 Provided by kernel mechanism called context switching

 Private address space

 Each program seems to have exclusive use of main
memory.

 Provided by kernel mechanism called virtual memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Autumn 2015 Processes 22

University of Washington

Multiprocessing: The Illusion

 Computer runs many processes simultaneously
 Applications for one or more users

 Web browsers, email clients, editors, …

 Background tasks

 Monitoring network & I/O devices

CPU
Registers

Memory

Stack

Heap

Code

Data

CPU
Registers

Memory

Stack

Heap

Code

Data …

CPU
Registers

Memory

Stack

Heap

Code

Data

Autumn 2015 Processes 23

University of Washington

Multiprocessing: The (Traditional) Reality

 Single processor executes multiple processes concurrently
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system (later in course)
 Register values for nonexecuting processes saved in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Autumn 2015 Processes 24

University of Washington

Multiprocessing: The (Traditional) Reality

 Save current registers in memory

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Autumn 2015 Processes 25

University of Washington

Multiprocessing: The (Traditional) Reality

 Schedule next process for execution

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Autumn 2015 Processes 26

University of Washington

Multiprocessing: The (Traditional) Reality

 Load saved registers and switch address space (context switch)

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

Autumn 2015 Processes 27

University of Washington

Multiprocessing: The (Modern) Reality

 Multicore processors
 Multiple CPUs on single chip

 Share main memory (and some of
the caches)

 Each can execute a separate process

 Scheduling of processors onto
cores done by kernel

CPU
Registers

Memory

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

Stack

Heap

Code

Data

Saved

registers

…

CPU
Registers

Autumn 2015 Processes 28

University of Washington

Concurrent Processes
 Each process is a logical control flow.

 Two processes run concurrently (are concurrent) if their
instruction executions (flows) overlap in time

 Otherwise, they are sequential

 Examples (running on single core):
 Concurrent: A & B, A & C

 Sequential: B & C (B ends before C starts)

29

Process A Process B Process C

time

Autumn 2015 Processes

Assume only one CPU

University of Washington

User’s View of Concurrent Processes

 Control flows for concurrent processes are physically disjoint
in time
 CPU only executes instructions for one process at a time

 However, the user can think of concurrent processes as
executing at the same time, in parallel

30

time

Process A Process B Process C

Autumn 2015 Processes

Assume only one CPU

University of Washington

Context Switching

 Processes are managed by a shared chunk of OS code
called the kernel
 Important: the kernel is not a separate process, but rather runs as part

of a user process

 Control flow passes from one process to another via a context
switch… (how?)

31

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Autumn 2015 Processes

Assume only one CPU

University of Washington

Processes

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

32 Autumn 2015 Processes

University of Washington

Creating New Processes & Programs

 fork-exec model:
 fork() creates a copy of the current process

 execve() replaces the current process’ code & address space with
the code for a different program

 fork() and execve() are system calls

 Other system calls for process management:
 getpid()

 exit()

 wait() / waitpid()

33 Autumn 2015 Processes

University of Washington

fork: Creating New Processes

 pid_t fork(void)

 creates a new process (child process) that is identical to the calling process
(parent process), including all state (memory, registers, etc.)

 returns 0 to the child process

 returns child’s process ID (pid) to the parent process

 Child is almost identical to parent:

 Child gets an identical
(but separate) copy of the
parent’s virtual address
space.

 Child has a different PID
than the parent

 fork is unique (and often confusing) because it is called once
but returns twice

 34

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Autumn 2015 Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process x (parent)

35 Autumn 2015 Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process x (parent)

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process y (child)

36 Autumn 2015 Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process x (parent)

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process y (child)

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = y

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = 0

37 Autumn 2015 Processes

University of Washington

Understanding fork

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process x (parent)

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

Process y (child)

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = y

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid = 0

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

pid_t pid = fork();

if (pid == 0) {

 printf("hello from child\n");

} else {

 printf("hello from parent\n");

}

hello from parent hello from child Which one is first?
38 Autumn 2015 Processes

University of Washington

Fork Example
 Parent and child both run the same code

 Distinguish parent from child by return value from fork()

 Which process runs first after the fork() is undefined
 Could be parent, could be child!

 Start with same state, but each has a private copy
 Same variables, same call stack, same file descriptors, same register

contents, same program counter…

39

void fork1()

{

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf("Bye from process %d with x = %d\n", getpid(), x);

}

Autumn 2015 Processes

University of Washington

Fork Example

40

void fork1()

{

 int x = 1;

 pid_t pid = fork();

 if (pid == 0) {

 printf("Child has x = %d\n", ++x);

 } else {

 printf("Parent has x = %d\n", --x);

 }

 printf("Bye from process %d with x = %d\n", getpid(), x);

}

Autumn 2015 Processes

University of Washington

Fork Example

 Both processes continue/start execution at line 3

 Child does not call fork! The instruction pointer points to the instruction after the
call to fork, the instruction pointer is part of the state that is copied to the child

 Child has variable pid = 0, parent has pid = process ID of child

 Concurrent execution: Can’t predict execution order of parent and child

 Duplicate but separate address space: both processes have a copy of x

 x has a value of 1 at line 3 in both parent and child

 Subsequent changes to x are independent

 Shared open files: stdout is the same in both parent and child

41

 void fork1()

 {

1. int x = 1;

2. pid_t pid = fork();

3. if (pid == 0) {

4. printf("Child has x = %d\n", ++x);

5. } else {

6. printf("Parent has x = %d\n", --x);

7. }

8. printf("Bye from process %d with x = %d\n", getpid(), x);

 }

Autumn 2015 Processes

University of Washington

Fork-Exec

 fork-exec model:
 fork() creates a copy of the current process

 execve() replaces the current process’ code & address space with
the code for a different program

 There is a whole family of exec calls – see exec(3) and execve(2)

42

// Example arguments: path="/usr/bin/ls”,

// argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL

void fork_exec(char *path, char *argv[])

{

 pid_t pid = fork();

 if (pid != 0) {

 printf("Parent: created a child %d\n”, pid);

 } else {

 printf("Child: exec-ing new program now\n");

 execv(path, argv);

 }

 printf("This line printed by parent only!\n");

}

Autumn 2015 Processes

Note: the return values of fork & execv
should be checked for errors.

University of Washington

Exec-ing a new program

43

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/ls

Data

fork():

exec()

Very high-level diagram of what
happens when you run the
command ”ls” in a Linux shell:

parent child child

Autumn 2015 Processes

University of Washington

execve Example

envp[n] = NULL

envp[n-1]

envp[0]

…

myargv[argc] = NULL

myargv[2]

myargv[0]

myargv[1]

“/usr/bin/ls”

“-l”

“lab4”

“USER=rea”

“PWD=/homes/iws/rea/351”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */

 if (execve(myargv[0], myargv, environ) < 0) {

 printf("%s: Command not found.\n", myargv[0]);

 exit(1);

 }

 }

Execute “/usr/bin/ls –l lab4” in child process using current
 environment:

(argc == 3)

Run the printenv command in a linux shell to see your own environment variables.
Autumn 2015 Processes 44

University of Washington

Structure of
the stack when
a new program
starts

Null-terminated

environment variable strings

Null-terminated

command-line arg strings

envp[n] == NULL

envp[n-1]

...
envp[0]

argv[argc] = NULL

argv[argc-1]

...
argv[0]

Future stack frame for
main

environ

(global var)

Bottom of stack

Top of stack

argv

(in %rsi)

envp

(in %rdx)

Stack frame for
libc_start_main

argc

(in %rdi)

Autumn 2015 Processes 45

University of Washington

exit: Ending a process

 void exit(int status)

 Exits a process

 Status code: 0 is used for a normal exit, nonzero for abnormal exit

 atexit() registers functions to be executed upon exit

46

void cleanup(void) {

 printf("cleaning up\n");

}

void fork6() {

 atexit(cleanup);

 fork();

 exit(0);

}

“cleanup” is a function pointer

Autumn 2015 Processes

University of Washington

Processes

 First some preliminaries
 Control flow

 Exceptional control flow

 Asynchronous exceptions (interrupts)

 Synchronous exceptions (traps & faults)

 Processes
 Creating new processes

 Fork and wait

 Zombies

47 Autumn 2015 Processes

University of Washington

Zombies
 Idea

 When process terminates, it still consumes system resources

 Various tables maintained by OS

 Called a “zombie”

 A living corpse, half alive and half dead

 Reaping
 Performed by parent on terminated child

 Parent is given exit status information

 Kernel then deletes zombie child process

 What if parent doesn’t reap?
 If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

 But in long-running processes we need explicit reaping

 e.g., shells and servers

48 Autumn 2015 Processes

On more recent Linux systems, init has been renamed as “systemd”.

University of Washington

wait: Synchronizing with Children

 Parent reaps a child by calling the wait function

 int wait(int *child_status)

 Suspends current process (i.e. the parent) until one of its children
terminates

 Return value is the pid of the child process that terminated

 On successful return, the child process is reaped

 If child_status != NULL, then the int that it points to will be set
to a value indicating why the child process terminated

 NULL is a macro for address 0, the null pointer

 There are special macros for interpreting this status – see man wait(2)

 If parent process has multiple children, wait() will return when
any of the children terminates
 waitpid() can be used to wait on a specific child process

49 Autumn 2015 Processes

University of Washington

Modeling fork with Process Graphs

 A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program:
 Each vertex is the execution of a statement

 a -> b means a happens before b

 Edges can be labeled with current value of variables

 printf vertices can be labeled with output

 Each graph begins with a vertex with no inedges

 Any topological sort of the graph corresponds to a feasible
total ordering.
 Total ordering of vertices where all edges point from left to right

Autumn 2015 Processes 50

University of Washington

wait: Synchronizing with Children

void fork_wait() {

 int child_status;

 if (fork() == 0) {

 printf("HC: hello from child\n");

 exit(0);

 } else {

 printf("HP: hello from parent\n");

 wait(&child_status);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

}

printf wait printf fork

printf

exit

HP

HC

CT

Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Autumn 2015 Processes 51

University of Washington

wait Example #2

52

void fork_wait2() {

 int child_status;

 pid_t child_pid;

 if (fork() == 0) {

 printf("child!\n");

 } else {

 printf(“parent!\n”);

 child_pid = wait(&child_status);

}

 printf("Bye\n");

 exit(0);

}

Autumn 2015 Processes

University of Washington

Process management summary

 fork gets us two copies of the same process (but fork()
returns different values to the two processes)

 execve has a new process substitute itself for the one that
called it
 Two-process program:

 First fork()

 if (pid == 0) { /* child code */ } else { /* parent code */ }

 Two different programs:

 First fork()

 if (pid == 0) { execve() } else { /* parent code */ }

 Now running two completely different programs

 wait / waitpid used to synchronize parent/child execution
and to reap child process

53 Autumn 2015 Processes

University of Washington

Summary

 Processes
 At any given time, system has multiple active processes

 On a one-CPU system, only one can execute at a time, but each process
appears to have total control of the processor

 OS periodically “context switches” between active processes

 Implemented using exceptional control flow

 Process management
 fork: one call, two returns

 exec: one call, usually no return

 wait or waitpid: synchronization

 exit: one call, no return

54 Autumn 2015 Processes

University of Washington

Detailed examples

55 Autumn 2015 Processes

University of Washington

fork Example: Two consecutive forks

void fork2()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("Bye\n");

} printf printf fork

printf

printf fork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

Autumn 2015 Processes 56

University of Washington

fork Example: Three consecutive forks

 Both parent and child can continue forking

57

void fork3()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("L2\n");

 fork();

 printf("Bye\n");

} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Autumn 2015 Processes

University of Washington

fork Example: Nested forks in children

void fork5()

{

 printf("L0\n");

 if (fork() == 0) {

 printf("L1\n");

 if (fork() == 0) {

 printf("L2\n");

 }

 }

 printf("Bye\n");

}

printf printf

fork

printf

printf

fork

print

f
L0

L2

Bye

L1 Bye

printf

Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

Autumn 2015 Processes 58

University of Washington

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6639

Terminating Child, PID = 6640

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6639 ttyp9 00:00:03 forks

 6640 ttyp9 00:00:00 forks <defunct>

 6641 ttyp9 00:00:00 ps

linux> kill 6639

[1] Terminated

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6642 ttyp9 00:00:00 ps

Zombie
Example

 ps shows child process as
“defunct”

 Killing parent allows child to be
reaped by init

void fork7()

{

 if (fork() == 0) {

 /* Child */

 printf("Terminating Child, PID = %d\n",

 getpid());

 exit(0);

 } else {

 printf("Running Parent, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 }

}

59 Autumn 2015 Processes

forks.c

University of Washington

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6676 ttyp9 00:00:06 forks

 6677 ttyp9 00:00:00 ps

linux> kill 6676

linux> ps

 PID TTY TIME CMD

 6585 ttyp9 00:00:00 tcsh

 6678 ttyp9 00:00:00 ps

Non-terminating
Child Example

 Child process still active even
though parent has terminated

 Must kill explicitly, or else will keep
running indefinitely

void fork8()

{

 if (fork() == 0) {

 /* Child */

 printf("Running Child, PID = %d\n",

 getpid());

 while (1)

 ; /* Infinite loop */

 } else {

 printf("Terminating Parent, PID = %d\n",

 getpid());

 exit(0);

 }

}

60 Autumn 2015 Processes

forks.c

University of Washington

wait() Example

 If multiple children completed, will take in arbitrary order

 Can use macros WIFEXITED and WEXITSTATUS to get information about exit
status

61

void fork10()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

Autumn 2015 Processes

University of Washington

waitpid(): Waiting for a Specific Process

pid_t waitpid(pid_t pid, int &status, int options)

 suspends current process until specific process terminates

 various options (that we won’t talk about)

62

void fork11()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {

 pid_t wpid = waitpid(pid[i], &child_status, 0);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

Autumn 2015 Processes

