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car *c = malloc(sizeof(car)); 

c->miles = 100; 

c->gals = 17; 

float mpg = get_mpg(c); 

free(c); 

Car c = new Car(); 

c.setMiles(100); 

c.setGals(17); 

float mpg = 

    c.getMPG(); 

get_mpg: 

    pushq   %rbp 

    movq    %rsp, %rbp 

    ... 

    popq    %rbp 

    ret 

Java: C: 

Assembly 
language: 

Machine 
code: 

0111010000011000 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

Computer 
system: 

OS: 

Data & addressing 
Integers & floats 
Machine code & C 
x86 assembly 
Procedures & stacks 
Arrays & structs 
Memory & caches 
Processes 
Virtual memory 
Memory allocation 
Java vs. C 
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Processes – another important abstraction 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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Control Flow 

 So far, we’ve seen how the flow of control changes as a single 
program executes 

 But a single CPU executes more than one program at a time – 
we also need to understand how control flows across the many 
components of the system 

 For now we will assume there is only ONE CPU 

 

 Exceptional control flow is the basic mechanism used for: 
 Transferring control between processes and OS 

 Handling I/O and virtual memory within the OS 

 Implementing multi-process applications like shells and web servers 

 Implementing concurrency 
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Control Flow 

 Processors do only one thing: 
 From startup to shutdown, a CPU simply reads and executes 

(interprets) a sequence of instructions, one at a time 

 This sequence is the CPU’s control flow (or flow of control) 
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<startup> 
inst1 
inst2 
inst3 
… 
instn 
<shutdown> 

Physical control flow 

time 
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Altering the Control Flow 
 Up to now: two ways to change control flow: 

 Jumps (conditional and unconditional) 

 Call and return 

Both react to changes in program state 

 

 Processor also needs to react to changes in system state 
 user hits “Ctrl-C” at the keyboard 

 user clicks on a different application’s window on the screen 

 data arrives from a disk or a network adapter 

 instruction divides by zero 

 system timer expires 

Can jumps and procedure calls achieve this? 
 Jumps and calls are not sufficient – the system needs mechanisms for 

“exceptional” control flow! 
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Exceptional Control Flow 
 Exists at all levels of a computer system 

 Low level mechanisms 
 Exceptions  

 change in processor’s control flow in response to a system event  
(i.e.,  change in system state, user-generated interrupt) 

 Implemented using a combination of hardware and OS software
  

 Higher level mechanisms 
 Process context switch 

 Implemented by OS software and hardware timer 

 Signals – you’ll hear about these in CSE451 and CSE/EE 466 474 

 Implemented by OS software 

 

We’ll talk about exceptions and process context switch 
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Processes 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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 An exception is transfer of control to the operating system (OS) 
kernel in response to some event  (i.e., change in processor state) 

 Kernel is the memory-resident part of the OS 

 Examples of events:  
div by 0, page fault, I/O request completes, Ctrl-C 

 

 

 

 

 

 

 
 

 How does the system know where to jump to in the OS? 

User Code OS Kernel Code 

exception 
exception processing 
by exception 
handler, then: 
 • return to current_instr, OR 
• return to next_instr, OR 
•abort 

event  current_instr 
next_instr 
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Exceptions 
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0 
1 

2 
... 

n-1 

Exception Table: a jump table for exceptions 

9 

 Each type of event has a  
unique exception number k 

 

 k = index into exception table  
(a.k.a. interrupt vector) 

 

 Handler k is called each time  
exception k occurs 

Exception 
Table 

code for   
exception handler 0 

code for  
exception handler 1 

code for 
exception handler 2 

code for  
exception handler n-1 

... 

Exception  
numbers 

Also called: Interrupt Vector Table 
Autumn 2015 Processes 



University of Washington 

Exception Table (Excerpt) 

10 

Exception Number Description Exception Class 

0 Divide error Fault 

13 General protection fault Fault 

14 Page fault Fault 

18 Machine check Abort 

32-255 OS-defined Interrupt or trap 
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Types of Exceptions 

 Asynchronous Exceptions (Interrupts) - Caused by events 
external to the processor 

 

 Synchronous Exceptions – Caused by events that occur as a 
result of executing an instruction 
 Traps - Intentional 

 Faults - Unintentional 

 Aborts - Unintentional 
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Processes 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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Asynchronous Exceptions (Interrupts) 

 Caused by events external to the processor 
 Indicated by setting the processor’s interrupt pin(s) (wire into CPU) 

 After interrupt handler runs, the handler returns to “next” instruction 

 Examples: 
 I/O interrupts 

 hitting Ctrl-C on the keyboard 

 clicking a mouse button or tapping a touchscreen 

 arrival of a packet from a network 

 arrival of data from a disk 

 Timer interrupt 

 Every few ms, an external timer chip triggers an interrupt 

 Used by the OS kernel to take back control from user programs 
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Synchronous Exceptions 
 Caused by events that occur as a result of executing an 

instruction: 
 Traps 

 Intentional: transfer control to OS to perform some function 

 Examples: system calls, breakpoint traps, special instructions 

 Returns control to “next” instruction 

 Faults 

 Unintentional but possibly recoverable  

 Examples: page faults (recoverable), segment protection faults 
(unrecoverable), integer divide-by-zero exceptions (unrecoverable) 

 Either re-executes faulting (“current”) instruction or aborts 

 Aborts 

 Unintentional and unrecoverable 

 Examples: parity error, machine check (hardware failure detected) 

 Aborts current program 
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System Calls 

Number Name Description 

0 read Read file 

1 write Write file 

2 open Open file 

3 close Close file 

4 stat Get info about file 

57 fork Create process 

59 execve Execute a program 

60 _exit Terminate process 

62 kill Send signal to process 

 Each x86-64 system call has a unique ID number 

 Examples: 
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Traps: System Call Example: Opening File 
 User calls: open(filename, options) 

 Calls __open function, which invokes system call instruction syscall 

 

 

 

 

 

 

 

 

 

 

 

00000000000e5d70 <__open>: 

... 

e5d79:   b8 02 00 00 00      mov  $0x2,%eax  # open is syscall #2 

e5d7e:   0f 05               syscall         # Return value in %rax 

e5d80:   48 3d 01 f0 ff ff   cmp  $0xfffffffffffff001,%rax  

... 

e5dfa:   c3                  retq 

User code OS Kernel code 

Exception 

Open file 

Returns 

syscall 
cmp 

 %rax contains syscall number 

 Other arguments in %rdi, 
%rsi, %rdx, %r10, %r8, %r9 

 Return value in %rax 

 Negative value is an error 
corresponding to negative 
errno 
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 User writes to memory location 

 That portion (page) of user’s memory  
is currently on disk 

 

 

 

 

 

 

 

 

 Page fault handler must load page into physical memory 

 Returns to faulting instruction: mov is executed again! 

 Successful on second try 

int a[1000]; 

main () 

{ 

    a[500] = 13; 

} 

 80483b7: c7 05 10 9d 04 08 0d  movl   $0xd,0x8049d10 

User code OS Kernel code 

exception: page fault 

Create page and  
load into memory returns 

movl 
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Fault Example: Page Fault 
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 Page fault handler detects invalid address 

 Sends SIGSEGV signal to user process 

 User process exits with “segmentation fault” 

int a[1000]; 

main () 

{ 

    a[5000] = 13; 

} 

 80483b7: c7 05 60 e3 04 08 0d  movl   $0xd,0x804e360 

User Process OS 

exception: page fault 

detect invalid address 

movl 

signal process 

18 

Fault Example: Invalid Memory Reference 
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Summary 

 Exceptions 
 Events that require non-standard control flow 

 Generated externally (interrupts) or internally (traps and faults) 

 After an exception is handled, one of three things may happen: 

 Re-execute the current instruction 

 Resume execution with the next instruction 

 Abort the process that caused the exception 
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Processes 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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What is a process? 

 Processes are another abstraction in our computer system 
 provided by the OS 

 OS uses a data structure to represent each process 

 provides an interface between the program and the underlying 
hardware (CPU + memory) 

 

 What do processes have to do with exceptional control flow? 
 Exceptional control flow is the mechanism that the OS uses to enable 

multiple processes to run on the same system. 

 

 What is the difference between: 
 a processor?      a program?      a process? 
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Processes 

 Definition: A process is an instance of a running 
program. 
 One of the most profound ideas in computer science 

 Not the same as “program” or “processor” 

 

 Process provides each program with two key 
abstractions: 
 Logical control flow 

 Each program seems to have exclusive use of the CPU 

 Provided by kernel mechanism called context switching 

 Private address space 

 Each program seems to have exclusive use of main 
memory.  

 Provided by kernel mechanism called virtual memory 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 
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Multiprocessing: The Illusion 

 Computer runs many processes simultaneously 
 Applications for one or more users 

 Web browsers, email clients, editors, … 

 Background tasks 

 Monitoring network & I/O devices 

 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data … 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 
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Multiprocessing: The (Traditional) Reality 

 Single processor executes multiple processes concurrently 
 Process executions interleaved (multitasking)  
 Address spaces managed by virtual memory system (later in course) 
 Register values for nonexecuting processes saved in memory 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Save current registers in memory 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Schedule next process for execution 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

… 
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Multiprocessing: The (Traditional) Reality 

 Load saved registers and switch address space (context switch) 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

Stack 

Heap 

Code 

Data 

Saved 

registers 

… 
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Multiprocessing: The (Modern) Reality 

 Multicore processors 
 Multiple CPUs on single chip 

 Share main memory (and some of 
the caches) 

 Each can execute a separate process 

 Scheduling of processors onto 
cores done by kernel 

 

CPU 
Registers 

Memory 

Stack 

Heap 

Code 

Data 

Saved 
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Data 

Saved 

registers 
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Code 
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Saved 
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CPU 
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Concurrent Processes 
 Each process is a logical control flow.  

 Two processes run concurrently (are concurrent) if their 
instruction executions (flows) overlap in time 

 Otherwise, they are sequential 

 Examples (running on single core): 
 Concurrent: A & B, A & C 

 Sequential: B & C  (B ends before C starts) 

29 

Process A Process B Process C 

time 
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User’s View of Concurrent Processes 

 Control flows for concurrent processes are physically disjoint 
in time 
 CPU only executes instructions for one process at a time 

 However, the user can think of concurrent processes as 
executing at the same time, in parallel 

30 

time 

Process A Process B Process C 
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Context Switching 

 Processes are managed by a shared chunk of OS code  
called the kernel 
 Important: the kernel is not a separate process, but rather runs as part 

of a user process 

 Control flow passes from one process to another via a context 
switch… (how?) 

 

31 

Process A Process B 

user code 

kernel code 

user code 

kernel code 

user code 

context switch 

context switch 

time 

Autumn 2015 Processes 

Assume only one CPU 



University of Washington 

Processes 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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Creating New Processes & Programs 

 fork-exec model: 
 fork() creates a copy of the current process 

 execve() replaces the current process’ code & address space with 
the code for a different program 

 

 fork() and execve() are system calls 

 

 Other system calls for process management: 
 getpid() 

 exit() 

 wait() / waitpid() 
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fork: Creating New Processes 

  pid_t fork(void) 

 creates a new process (child process) that is identical to the calling process 
(parent process), including all state (memory, registers, etc.) 

 returns 0 to the child process 

 returns child’s process ID (pid) to the parent process 

 Child is almost identical to parent: 

 Child gets an identical  
(but separate) copy of the  
parent’s virtual address  
space. 

 Child has a different PID  
than the parent 
 

 fork is unique (and often confusing) because it is called once 
but returns twice 

 34 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 
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Understanding fork 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process x    (parent) 
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Understanding fork 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process x    (parent) 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process y   (child) 
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Understanding fork 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process x    (parent) 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process y   (child) 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

pid = y 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

pid = 0 
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Understanding fork 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process x    (parent) 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

Process y   (child) 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

pid = y 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

pid = 0 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

pid_t pid = fork(); 

if (pid == 0) { 

   printf("hello from child\n"); 

} else {  

   printf("hello from parent\n"); 

} 

hello from parent hello from child Which one is first? 
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Fork Example 
 Parent and child both run the same code 

 Distinguish parent from child by return value from fork() 

 Which process runs first after the fork() is undefined 
 Could be parent, could be child! 

 Start with same state, but each has a private copy 
 Same variables, same call stack, same file descriptors, same register 

contents, same program counter… 

39 

void fork1() 

{ 

    int x = 1; 

    pid_t pid = fork(); 

    if (pid == 0) { 

 printf("Child has x = %d\n", ++x); 

    } else { 

 printf("Parent has x = %d\n", --x); 

    } 

    printf("Bye from process %d with x = %d\n", getpid(), x); 

} 
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Fork Example 
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void fork1() 

{ 

    int x = 1; 

    pid_t pid = fork(); 

    if (pid == 0) { 

 printf("Child has x = %d\n", ++x); 

    } else { 

 printf("Parent has x = %d\n", --x); 

    } 

    printf("Bye from process %d with x = %d\n", getpid(), x); 

} 
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Fork Example 

 Both processes continue/start execution at line 3 

 Child does not call fork! The instruction pointer points to the instruction after the 
call to fork, the instruction pointer is part of the state that is copied to the child 

 Child has variable pid = 0, parent has pid = process ID of child 

 Concurrent execution: Can’t predict execution order of parent and child 

 Duplicate but separate address space: both processes have a copy of x 

 x has a value of 1 at line 3 in both parent and child 

 Subsequent changes to x are independent 

 Shared open files: stdout is the same in both parent and child 
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  void fork1()  

  { 

1.     int x = 1; 

2.     pid_t pid = fork(); 

3.     if (pid == 0) { 

4.  printf("Child has x = %d\n", ++x); 

5.     } else { 

6.  printf("Parent has x = %d\n", --x); 

7.     } 

8.     printf("Bye from process %d with x = %d\n", getpid(), x); 

  } 
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Fork-Exec 

 fork-exec model: 
 fork() creates a copy of the current process 

 execve() replaces the current process’ code & address space with 
the code for a different program 

 There is a whole family of exec calls – see exec(3) and execve(2) 

42 

// Example arguments: path="/usr/bin/ls”, 

//     argv[0]="/usr/bin/ls”, argv[1]="-ahl", argv[2]=NULL 

void fork_exec(char *path, char *argv[]) 

{ 

    pid_t pid = fork(); 

    if (pid != 0) { 

        printf("Parent: created a child %d\n”, pid); 

    } else { 

        printf("Child: exec-ing new program now\n"); 

        execv(path, argv); 

    } 

    printf("This line printed by parent only!\n"); 

} 
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Exec-ing a new program 

43 

Stack 

Code: /usr/bin/bash 

Data 

Heap 

Stack 

Code: /usr/bin/bash 

Data 

Heap 

Stack 

Code: /usr/bin/bash 

Data 

Heap 

Stack 

Code: /usr/bin/ls 

Data 

fork(): 

exec() 

Very high-level diagram of what 
happens when you run the 
command ”ls” in a Linux shell: 

parent child child 
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execve Example 

envp[n] = NULL 

envp[n-1] 

envp[0] 

… 

myargv[argc] = NULL 

myargv[2] 

myargv[0] 

myargv[1] 

“/usr/bin/ls” 

“-l” 

“lab4” 

“USER=rea” 

“PWD=/homes/iws/rea/351” 

environ 

myargv 

  if ((pid = Fork()) == 0) {   /* Child runs program */                                                

      if (execve(myargv[0], myargv, environ) < 0) {                                                         

          printf("%s: Command not found.\n", myargv[0]);                                                  

          exit(1);                                                                                      

      }                                                                                                 

  }                                                                                                     

Execute “/usr/bin/ls –l lab4” in child process using current  
               environment: 

(argc == 3) 

Run the printenv command in a linux shell to see your own environment variables. 
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Structure of  
the stack when 
a new program 
starts 

Null-terminated 

environment variable strings 

Null-terminated 

command-line arg strings 

envp[n] == NULL 

envp[n-1] 

... 
envp[0] 

argv[argc] = NULL 

argv[argc-1] 

... 
argv[0] 

Future stack frame for 
main 

environ 

(global var) 

Bottom of stack 

Top of stack 

argv 

(in %rsi) 

envp 

(in %rdx) 

Stack frame for  
libc_start_main 

argc 

(in %rdi) 
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exit: Ending a process 

 void exit(int status) 

 Exits a process 

 Status code: 0 is used for a normal exit, nonzero for abnormal exit 

 atexit() registers functions to be executed upon exit 

46 

void cleanup(void) { 

   printf("cleaning up\n"); 

} 

 

void fork6() { 

   atexit(cleanup); 

   fork(); 

   exit(0); 

} 

“cleanup” is a function pointer 
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Processes 

 First some preliminaries 
 Control flow 

 Exceptional control flow 

 Asynchronous exceptions (interrupts) 

 Synchronous exceptions (traps & faults) 

 Processes 
 Creating new processes 

 Fork and wait 

 Zombies 
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Zombies 
 Idea 

 When process terminates, it still consumes system resources 

 Various tables maintained by OS 

 Called a “zombie” 

 A living corpse, half alive and half dead 

 Reaping 
 Performed by parent on terminated child 

 Parent is given exit status information 

 Kernel then deletes zombie child process 

 What if parent doesn’t reap? 
 If any parent terminates without reaping a child, then the orphaned 

child will be reaped by init process (pid == 1) 

 But in long-running processes we need explicit reaping 

 e.g., shells and servers 
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wait: Synchronizing with Children 

 Parent reaps a child by calling the wait function 

 int wait(int *child_status) 

 Suspends current process (i.e. the parent) until one of its children 
terminates 

 Return value is the pid of the child process that terminated 

 On successful return, the child process is reaped 

 If child_status != NULL, then the int that it points to will be set 
to a value indicating why the child process terminated 

 NULL is a macro for address 0, the null pointer 

 There are special macros for interpreting this status – see man wait(2) 
 

 If parent process has multiple children, wait() will return when 
any of the children terminates 
 waitpid() can be used to wait on a specific child process 
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Modeling fork with Process Graphs 

 A process graph is a useful tool for capturing the partial 
ordering of statements in a concurrent program: 
 Each vertex is the execution of a statement 

 a -> b means a happens before b 

 Edges can be labeled with current value of variables 

 printf vertices can be labeled with output 

 Each graph begins with a vertex with no inedges  

 Any topological sort of the graph corresponds to a feasible 
total ordering.  
 Total ordering of vertices where all edges point from left to right 
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wait: Synchronizing with Children 

void fork_wait() { 

    int child_status; 

 

    if (fork() == 0) { 

        printf("HC: hello from child\n"); 

 exit(0); 

    } else { 

        printf("HP: hello from parent\n"); 

        wait(&child_status); 

        printf("CT: child has terminated\n"); 

    } 

    printf("Bye\n"); 

} 

printf wait printf fork 

printf 

exit 

HP 

HC 

CT 

Bye 

forks.c 

Feasible output: 
HC 
HP 
CT 
Bye 

Infeasible output: 
HP 
CT 
Bye 
HC 
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wait Example #2 

52 

void fork_wait2() { 

   int child_status; 

   pid_t child_pid; 

 

   if (fork() == 0) { 

      printf("child!\n"); 

   } else { 

      printf(“parent!\n”); 

      child_pid = wait(&child_status); 

} 

   printf("Bye\n"); 

   exit(0); 

} 
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Process management summary 

 fork gets us two copies of the same process (but fork() 
returns different values to the two processes) 

 execve has a new process substitute itself for the one that 
called it 
 Two-process program: 

 First fork() 

 if (pid == 0) { /* child code */ } else { /* parent code */ } 

 Two different programs: 

 First fork() 

 if (pid == 0) { execve() } else { /* parent code */ } 

 Now running two completely different programs 

 wait / waitpid used to synchronize parent/child execution 
and to reap child process 
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Summary 

 Processes 
 At any given time, system has multiple active processes 

 On a one-CPU system, only one can execute at a time, but each process 
appears to have total control of the processor 

 OS periodically “context switches” between active processes 

 Implemented using exceptional control flow 

 Process management 
 fork: one call, two returns 

 exec: one call, usually no return 

 wait or waitpid: synchronization 

 exit: one call, no return 
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Detailed examples 
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fork Example: Two consecutive forks 

void fork2() 

{ 

    printf("L0\n"); 

    fork(); 

    printf("L1\n"); 

    fork(); 

    printf("Bye\n"); 

} printf printf fork 

printf 

printf fork 

printf fork 

printf 

printf 

Bye 

L0 

Bye 

L1 

L1 

Bye 

Bye 

Feasible output: 
L0 
L1 
Bye 
Bye 
L1 
Bye 
Bye 

Infeasible output: 
L0 
Bye 
L1 
Bye 
L1 
Bye 
Bye 
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fork Example: Three consecutive forks 

 Both parent and child can continue forking 

57 

void fork3() 

{ 

    printf("L0\n"); 

    fork(); 

    printf("L1\n");     

    fork(); 

    printf("L2\n");     

    fork(); 

    printf("Bye\n"); 

} L1 L2 

L2 

Bye 

Bye 

Bye 

Bye 

L1 L2 

L2 

Bye 

Bye 

Bye 

Bye 

L0 

Autumn 2015 Processes 



University of Washington 

fork Example: Nested forks in children 

void fork5() 

{ 

    printf("L0\n"); 

    if (fork() == 0) { 

        printf("L1\n"); 

        if (fork() == 0) { 

            printf("L2\n"); 

        } 

    } 

    printf("Bye\n"); 

} 

printf printf 

fork 

printf 

printf 

fork 

print

f 
L0 

L2 

Bye 

L1 Bye 

printf 

Bye 

Feasible output: 
L0 
Bye 
L1 
L2 
Bye 
Bye 

Infeasible output: 
L0 
Bye 
L1 
Bye 
Bye 
L2 
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linux> ./forks 7 & 

[1] 6639 

Running Parent, PID = 6639 

Terminating Child, PID = 6640 

linux> ps 

  PID TTY          TIME CMD 

 6585 ttyp9    00:00:00 tcsh 

 6639 ttyp9    00:00:03 forks 

 6640 ttyp9    00:00:00 forks <defunct> 

 6641 ttyp9    00:00:00 ps 

linux> kill 6639 

[1]    Terminated 

linux> ps 

  PID TTY          TIME CMD 

 6585 ttyp9    00:00:00 tcsh 

 6642 ttyp9    00:00:00 ps 

Zombie 
Example 

 ps shows child process as 
“defunct” 

 

 Killing parent allows child to be 
reaped by init 

void fork7() 

{ 

    if (fork() == 0) { 

 /* Child */ 

 printf("Terminating Child, PID = %d\n", 

        getpid()); 

 exit(0); 

    } else { 

 printf("Running Parent, PID = %d\n", 

        getpid()); 

 while (1) 

     ; /* Infinite loop */ 

    } 

} 
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linux> ./forks 8 

Terminating Parent, PID = 6675 

Running Child, PID = 6676 

linux> ps 

  PID TTY          TIME CMD 

 6585 ttyp9    00:00:00 tcsh 

 6676 ttyp9    00:00:06 forks 

 6677 ttyp9    00:00:00 ps 

linux> kill 6676 

linux> ps 

  PID TTY          TIME CMD 

 6585 ttyp9    00:00:00 tcsh 

 6678 ttyp9    00:00:00 ps 

Non-terminating 
Child Example 

 Child process still active even 
though parent has terminated 

 

 Must kill explicitly, or else will keep 
running indefinitely 

void fork8() 

{ 

    if (fork() == 0) { 

 /* Child */ 

 printf("Running Child, PID = %d\n", 

        getpid()); 

 while (1) 

     ; /* Infinite loop */ 

    } else { 

 printf("Terminating Parent, PID = %d\n", 

        getpid()); 

 exit(0); 

    } 

} 
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wait() Example 

 If multiple children completed, will take in arbitrary order 

 Can use macros WIFEXITED and WEXITSTATUS to get information about exit 
status 
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void fork10() 

{ 

    pid_t pid[N]; 

    int i; 

    int child_status; 

    for (i = 0; i < N; i++) 

 if ((pid[i] = fork()) == 0) 

     exit(100+i); /* Child */ 

    for (i = 0; i < N; i++) { 

 pid_t wpid = wait(&child_status); 

 if (WIFEXITED(child_status)) 

     printf("Child %d terminated with exit status %d\n", 

     wpid, WEXITSTATUS(child_status)); 

 else 

     printf("Child %d terminated abnormally\n", wpid); 

    } 

} 
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waitpid(): Waiting for a Specific Process 

pid_t waitpid(pid_t pid, int &status, int options) 

 suspends current process until specific process terminates 

 various options (that we won’t talk about) 
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void fork11() 

{ 

    pid_t pid[N]; 

    int i; 

    int child_status; 

    for (i = 0; i < N; i++) 

 if ((pid[i] = fork()) == 0) 

     exit(100+i); /* Child */ 

    for (i = 0; i < N; i++) { 

 pid_t wpid = waitpid(pid[i], &child_status, 0); 

 if (WIFEXITED(child_status)) 

     printf("Child %d terminated with exit status %d\n", 

     wpid, WEXITSTATUS(child_status)); 

 else 

     printf("Child %d terminated abnormally\n", wpid); 

    } 
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