
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2015 Memory and Caches

University of Washington

Memory Allocation Example

char big_array[1L<<24]; /* 16 MB */

char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main ()

{

 void *p1, *p2, *p3, *p4;

 int local = 0;

 p1 = malloc(1L << 28); /* 256 MB */

 p2 = malloc(1L << 8); /* 256 B */

 p3 = malloc(1L << 32); /* 4 GB */

 p4 = malloc(1L << 8); /* 256 B */

 /* Some print statements ... */

}

not drawn to scale

Where does everything go?

Stack

Text

Data

Heap

Shared
Libraries

2 Buffer Overflow Autumn 2015

University of Washington

How does execution time grow with SIZE?

3

int array[SIZE];

int A = 0;

for (int i = 0 ; i < 200000 ; ++ i) {

 for (int j = 0 ; j < SIZE ; ++ j) {

 A += array[j];

 }

}

SIZE

TIME

Plot

Autumn 2015 Memory and Caches

University of Washington

Actual Data

4
SIZE

Ti
m

e

Autumn 2015 Memory and Caches

University of Washington

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Program optimizations that consider caches

5 Autumn 2015 Memory and Caches

University of Washington

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Problem: lots of waiting on memory

6

cycle = single fixed-time
 machine step Autumn 2015 Memory and Caches

University of Washington

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: caches

7

Cache

cycle = single fixed-time
 machine step Autumn 2015 Memory and Caches

University of Washington

Cache

 English definition: a hidden storage space
for provisions, weapons, and/or treasures

 CSE definition: computer memory with short access time
used for the storage of frequently or recently used
instructions or data (i-cache and d-cache)

more generally,

used to optimize data transfers between system elements
with different characteristics (network interface cache, I/O
cache, etc.)

8 Autumn 2015 Memory and Caches

University of Washington

General Cache Mechanics

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3 Cache

Memory
• Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

or “lines”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory.

• Caches a subset of the blocks
(a.k.a. lines)

Autumn 2015 Memory and Caches

University of Washington

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

10 Autumn 2015 Memory and Caches

University of Washington

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

11 Autumn 2015 Memory and Caches

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

12 Autumn 2015 Memory and Caches

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Why is this important?

block

13 Autumn 2015 Memory and Caches

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality?

block

14 Autumn 2015 Memory and Caches

University of Washington

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

 How do caches take advantage of this?

block

block

15 Autumn 2015 Memory and Caches

University of Washington

Example: Any Locality?

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

16 Autumn 2015 Memory and Caches

University of Washington

Example: Any Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:
 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

 Being able to assess the locality of code is a crucial skill
for a programmer

sum = 0;

for (i = 0; i < n; i++)

 sum += a[i];

return sum;

17 Autumn 2015 Memory and Caches

University of Washington

Locality Example #1

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

18

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Autumn 2015 Memory and Caches

University of Washington

Locality Example #1

int sum_array_rows(int a[M][N])

{

 int i, j, sum = 0;

 for (i = 0; i < M; i++)

 for (j = 0; j < N; j++)

 sum += a[i][j];

 return sum;

}

19

 1: a[0][0]

 2: a[0][1]

 3: a[0][2]

 4: a[0][3]

 5: a[1][0]

 6: a[1][1]

 7: a[1][2]

 8: a[1][3]

 9: a[2][0]

10: a[2][1]

11: a[2][2]

12: a[2][3]

stride-1

Autumn 2015 Memory and Caches

Order
Accessed

76 92 108

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

5
a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

0 5
a

[2]

[2]

a

[2]

[3]

a

[2]

[1]

a

[2]

[0]

a

[1]

[0]

Layout in Memory

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

76 is just one possible starting address of array a

University of Washington

Locality Example #2

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

20

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Autumn 2015 Memory and Caches

University of Washington

 1: a[0][0]

 2: a[1][0]

 3: a[2][0]

 4: a[0][1]

Locality Example #2

int sum_array_cols(int a[M][N])

{

 int i, j, sum = 0;

 for (j = 0; j < N; j++)

 for (i = 0; i < M; i++)

 sum += a[i][j];

 return sum;

}

21

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

 5: a[1][1]

 6: a[2][1]

 7: a[0][2]

 8: a[1][2]

 9: a[2][2]

10: a[0][3]

11: a[1][3]

12: a[2][3]

stride-N

Autumn 2015 Memory and Caches

76 92 108

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

5
a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

0 5
a

[2]

[2]

a

[2]

[3]

a

[2]

[1]

a

[2]

[0]

a

[1]

[0]

Layout in Memory

Order
Accessed

M = 3, N=4

University of Washington

Locality Example #3

int sum_array_3d(int a[M][N][L])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < L; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

 What is wrong with this code?

 How can it be fixed?

22 Autumn 2015 Memory and Caches

University of Washington

Locality Example #3

int sum_array_3d(int a[M][N][L])

{

 int i, j, k, sum = 0;

 for (i = 0; i < N; i++)

 for (j = 0; j < L; j++)

 for (k = 0; k < M; k++)

 sum += a[k][i][j];

 return sum;

}

 What is wrong with this code?

 How can it be fixed?

23 Autumn 2015 Memory and Caches 76 92 108

a

[0]

[0]

[0]

a

[0]

[0]

[1]

a

[0]

[0]

[2]

a

[0]

[0]

[3]

5

a

[0]

[1]

[1]

a

[0]

[1]

[2]

a

[0]

[1]

[3]

0 5

a

[0]

[2]

[2]

a

[0]

[2]

[3]

a

[0]

[2]

[1]

a

[0]

[2]

[0]

a

[0]

[1]

[0]

Layout in Memory (for M = ?, N = 3, L=4)

a

[1]

[0]

[0]

a

[1]

[0]

[1]

a

[1]

[0]

[2]

a

[1]

[0]

[3]

5

a

[1]

[1]

[1]

a

[1]

[1]

[2]

a

[1]

[1]

[3]

0 5

a

[1]

[2]

[2]

a

[1]

[2]

[3]

a

[1]

[2]

[1]

a

[1]

[2]

[0]

a

[1]

[1]

[0]

a

[2]

[0]

[0]

a

[2]

[0]

[1]

a

[2]

[0]

[2]

a

[2]

[0]

[3]

5

a

[2]

[1]

[1]

a

[2]

[1]

[2]

a

[2]

[1]

[3]

0 5

a

[2]

[2]

[2]

a

[2]

[2]

[3]

a

[2]

[2]

[1]

a

[2]

[2]

[0]

a

[2]

[1]

[0] …

University of Washington

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Program optimizations that consider caches

24 Autumn 2015 Memory and Caches

University of Washington

Cost of Cache Misses

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

 Cache hit time of 1 cycle
 Miss penalty of 100 cycles

25

cycle = single fixed-time
 machine step

Autumn 2015 Memory and Caches

University of Washington

Cost of Cache Misses

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

 Cache hit time of 1 cycle
 Miss penalty of 100 cycles

 Average access time:

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”

26

cycle = single fixed-time
 machine step

check the cache every time

Autumn 2015 Memory and Caches

University of Washington

Cache Performance Metrics

 Miss Rate
 Fraction of memory references not found in cache (misses / accesses)

= 1 - hit rate

 Typical numbers (in percentages):

 3% - 10% for L1

 Can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
 Time to deliver a line in the cache to the processor

 Includes time to determine whether the line is in the cache

 Typical hit times: 4 clock cycles for L1; 10 clock cycles for L2

 Miss Penalty
 Additional time required because of a miss

 Typically 50 - 200 cycles for missing in L2 & going to main memory
(Trend: increasing!)

27 Autumn 2015 Memory and Caches

University of Washington

Can we have more than one cache?

 Why would we want to do that?

28 Autumn 2015 Memory and Caches

University of Washington

Memory Hierarchies

 Some fundamental and enduring properties of hardware and
software systems:
 Faster storage technologies almost always cost more per byte and have

lower capacity

 The gaps between memory technology speeds are widening

 True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

 Well-written programs tend to exhibit good locality

 These properties complement each other beautifully

 They suggest an approach for organizing memory and storage
systems known as a memory hierarchy

29 Autumn 2015 Memory and Caches

University of Washington

An Example Memory Hierarchy

30

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

Autumn 2015 Memory and Caches

University of Washington

An Example Memory Hierarchy

31

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

explicitly program-controlled
(e.g. refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

Autumn 2015 Memory and Caches

University of Washington

Memory Hierarchies

 Fundamental idea of a memory hierarchy:
 For each level k, the faster, smaller device at level k serves as a cache for

the larger, slower device at level k+1.

 Why do memory hierarchies work?
 Because of locality, programs tend to access the data at level k more

often than they access the data at level k+1.

 Thus, the storage at level k+1 can be slower, and thus larger and
cheaper per bit.

 Big Idea: The memory hierarchy creates a large pool of
storage that costs as much as the cheap storage near the
bottom, but that serves data to programs at the rate of the
fast storage near the top.

32 Autumn 2015 Memory and Caches

University of Washington

Intel Core i7 Cache Hierarchy

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

33 Autumn 2015 Memory and Caches

University of Washington

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Program optimizations that consider caches

34 Autumn 2015 Memory and Caches

University of Washington

Cache Organization

 Where should data go in the cache?
 We need a mapping from memory addresses to specific locations in the

cache to make checking the cache for an address fast

 Otherwise each memory access requires “searching the entire
cache” (slow!)

 What is a data structure that provides fast lookup?

Autumn 2015 35 Memory and Caches

University of Washington

Aside: Hash Tables for Fast Lookup

Autumn 2015 36 Memory and Caches

0

1

2

3

4

5

6

7

8

9

Insert:

5

27

34

1002

119

University of Washington

Aside: Hash Tables for Fast Lookup

Autumn 2015 37 Memory and Caches

000

001

010

011

100

101

110

111

0

1

2

3

4

5

6

7

Insert:

000001

000101

110011

101010

100111

University of Washington

Where should we put data in the cache?

38

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Data

Memory Cache

 How can we compute this mapping?

address mod cache size

same as
low-order log2(cache size) bits

Autumn 2015 Memory and Caches

University of Washington

Where should we put data in the cache?

39

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Data

Memory Cache

Collision.

Hmm.. The cache might get confused later!

Why? And how do we solve that?

Autumn 2015 Memory and Caches

University of Washington

Use tags to record which location is cached

40

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Tag Data

00

??

01

01

Memory Cache

tag = rest of address bits

Autumn 2015 Memory and Caches

University of Washington

What’s a cache block? (or cache line)

41

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Byte

Address

0

1

2

3

Index

0

1

2

3

4

5

6

7

Block (line)

number

block/line size = ?

typical block/line sizes:
32 bytes, 64 bytes

Autumn 2015 Memory and Caches

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00

01

10

11

University of Washington

A puzzle.

 What can you infer from this:

 Cache starts empty

 Access (addr, hit/miss) stream:

 (10, miss), (11, hit), (12, miss)

42 Autumn 2015 Memory and Caches

University of Washington

A puzzle.

 What can you infer from this:

 Cache starts empty

 Access (addr, hit/miss) stream:

 (10, miss), (11, hit), (12, miss)

43

block size >= 2 bytes block size < 8 bytes

Autumn 2015 Memory and Caches

University of Washington

Problems with direct mapped caches?

 direct mapped:

 Each memory address can

be mapped to exactly one

index in the cache.

 What happens if a

 program uses addresses

 2, 6, 2, 6, 2, …?

00

01

10

11

Index

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Memory

Address

Autumn 2015 Memory and Caches 44

2 and 6 conflict

University of Washington

Associativity

 What if we could store data in any place in the cache?

45 Autumn 2015 Memory and Caches

University of Washington

Associativity
 What if we could store data in any place in the cache?

 That might slow down caches (more complicated hardware), so
we do something in between.

 Each address maps to exactly one set.

46

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way

8 sets,

1 block each

2-way

4 sets,

2 blocks each

4-way

2 sets,

4 blocks each

0

 Set

8-way

1 set,

8 blocks

direct mapped fully associative

Autumn 2015 Memory and Caches

University of Washington

Now how do I know where data goes?

47

m-bit Address

k bits (m-k-n) bits
n-bit Block

Offset Tag Index

Autumn 2015 Memory and Caches

University of Washington

What’s a cache block? (or cache line)

48

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Byte

Address

0

1

2

3

Index

0

1

2

3

4

5

6

7

Block (line)

number

block/line size = ?

typical block/line sizes:
32 bytes, 64 bytes

Autumn 2015 Memory and Caches

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

00

01

10

11

University of Washington

Now how do I know where data goes?

49

m-bit Address

k bits (m-k-n) bits
n-bit Block

Offset Tag Index

4-bit Address

? bits ? bits
?-bits Block

Offset

Our example used a 22-block cache with 21 bytes per

block. Where would 13 (1101) be stored?

Autumn 2015 Memory and Caches

University of Washington

Example placement in set-associative caches

 Where would data from address 0x1833 be placed?
 Block size is 16 bytes.

 0x1833 in binary is 00...0110000 011 0011.

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

m-bit Address

k bits (m-k-n) bits
n-bit Block

Offset Tag Index

k = ? k = ? k = ?

Autumn 2015 Memory and Caches 50

University of Washington

Example placement in set-associative caches

 Where would data from address 0x1833 be placed?
 Block size is 16 bytes.

 0x1833 in binary is 00...0110000 011 0011.

m-bit Address

k bits (m-k-4) bits
4-bit Block

Offset Tag Index

k = 3 k = 2 k = 1

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

Autumn 2015 Memory and Caches 51

University of Washington

Block replacement

 Any empty block in the correct set may be used for storing data.

 If there are no empty blocks, which one should we replace?

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

Autumn 2015 Memory and Caches 52

University of Washington

Block replacement

 Replace something, of course, but what?

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

Autumn 2015 Memory and Caches 53

University of Washington

Block replacement

 Replace something, of course, but what?

 Obvious for direct-mapped caches, what about set-associative?

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

Autumn 2015 Memory and Caches 54

University of Washington

Block replacement

 Replace something, of course, but what?

 Caches typically use something close to least recently used (LRU)

 (hardware usually implements “not most recently used”)

0

1

2

3

4

5

6

7

 Set

0

1

2

3

 Set

0

1

 Set

1-way associativity

8 sets, 1 block each

2-way associativity

4 sets, 2 blocks each

4-way associativity

2 sets, 4 blocks each

Autumn 2015 Memory and Caches 55

University of Washington

Another puzzle.

 What can you infer from this:

 Cache starts empty

 Access (addr, hit/miss) stream

 (10, miss); (12, miss); (10, miss)

56 Autumn 2015 Memory and Caches

University of Washington

Another puzzle.

 What can you infer from this:

 Cache starts empty

 Access (addr, hit/miss) stream

 (10, miss); (12, miss); (10, miss)

57

12 is not in the same
block as 10

12’s block replaced 10’s block

direct-mapped cache

Autumn 2015 Memory and Caches

University of Washington

General Cache Organization (S, E, B)

E = 2e lines per set (we say “E-way”)

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes of data per cache line (the data block)

cache size:
S x E x B data bytes

58 Autumn 2015 Memory and Caches

University of Washington

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes of data per cache line (the data block)

t bits s bits b bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
•Yes + line valid: hit
• Locate data starting

at offset

59 Autumn 2015 Memory and Caches

University of Washington

Example: Direct-Mapped Cache (E = 1)

S = 2s sets

Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

find set

60 Autumn 2015 Memory and Caches

University of Washington

Example: Direct-Mapped Cache (E = 1)
Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match?: yes = hit valid? +

block offset

tag

61 Autumn 2015 Memory and Caches

University of Washington

Example: Direct-Mapped Cache (E = 1)
Direct-mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match?: yes = hit valid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

62 Autumn 2015 Memory and Caches

University of Washington

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

find set

65

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

Autumn 2015 Memory and Caches

University of Washington

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

compare both

valid? + match: yes = hit

block offset

tag

66 Autumn 2015 Memory and Caches

University of Washington

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

E-way Set-Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

67

compare both

Autumn 2015 Memory and Caches

University of Washington

Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

 Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

 direct-mapped caches have more conflict misses than
n-way set-associative (where n is a power of 2 and n > 1)

 Capacity miss
 Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit)

69 Autumn 2015 Memory and Caches

University of Washington

What about writes?

 Multiple copies of data exist:
 L1, L2, possibly L3, main memory

 What is the main problem with that?

70 Autumn 2015 Memory and Caches

University of Washington

What about writes?

 Multiple copies of data exist:
 L1, L2, possibly L3, main memory

 What to do on a write-hit?
 Write-through: write immediately to memory, all caches in between.

 Write-back: defer write to memory until line is evicted (replaced)

 Need a dirty bit to indicate if line is different from memory or not

 What to do on a write-miss?
 Write-allocate(“fetch on write”): load into cache, update line in cache.

 Good if more writes or reads to the location follow

 No-write-allocate(“write around”): just write immediately to memory.

 Typical caches:
 Write-back + Write-allocate, usually

 Write-through + No-write-allocate, occasionally

71

why?

Autumn 2015 Memory and Caches

University of Washington

Write-back, write-allocate example

72

0xBEEF Cache

Memory

U

0xCAFE

0xBEEF

0

T

U

dirty bit

Autumn 2015 Memory and Caches

tag (there is only one set in this tiny cache, so the tag is the entire address!)

In this example we are sort of
ignoring block offsets. Here a block
holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache.

Contents of memory stored at address U

University of Washington

Write-back, write-allocate example

73

0xBEEF Cache

Memory

U

0xCAFE

0xBEEF

0

T

U

mov 0xFACE, T

dirty bit

Autumn 2015 Memory and Caches

University of Washington

0xBEEF U 0

Write-back, write-allocate example

74

0xCAFE Cache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T

dirty bit 0xCAFE 0

Autumn 2015 Memory and Caches

Step 1: Bring T into cache

University of Washington

0xBEEF U 0

Write-back, write-allocate example

75

0xCAFE Cache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T

dirty bit 0xFACE 1

Autumn 2015 Memory and Caches

Step 2: Write 0xFACE
to cache only and set
dirty bit.

University of Washington

0xBEEF U 0

Write-back, write-allocate example

76

0xCAFE Cache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T mov 0xFEED, T

dirty bit 0xFACE 1 0xFEED

Autumn 2015 Memory and Caches

Write hit!
Write 0xFEED to

cache only

University of Washington

0xBEEF U 0

Write-back, write-allocate example

77

0xCAFE Cache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T mov 0xFEED, T mov U, %rax

dirty bit 0xFACE 1 0xFEED

Autumn 2015 Memory and Caches

University of Washington

Write-back, write-allocate example

78

0xBEEF Cache

Memory

U

0xFEED

0xBEEF

0

T

U

mov 0xFACE, T mov 0xFEED, T mov U, %rax

dirty bit

Autumn 2015 Memory and Caches

1. Write T back to memory
since it is dirty.

2. Bring U into the cache so
we can copy it into %rax

University of Washington

Back to the Core i7 to look at ways

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

79

slower, but
more likely
to hit

Autumn 2015 Memory and Caches

University of Washington

Where else is caching used?

80 Autumn 2015 Memory and Caches

University of Washington

Software Caches are More Flexible

 Examples
 File system buffer caches, web browser caches, etc.

 Some design differences
 Almost always fully-associative

 so, no placement restrictions

 index structures like hash tables are common (for placement)

 Often use complex replacement policies

 misses are very expensive when disk or network involved

 worth thousands of cycles to avoid them

 Not necessarily constrained to single “block” transfers

 may fetch or write-back in larger units, opportunistically

81 Autumn 2015 Memory and Caches

University of Washington

Optimizations for the Memory Hierarchy

 Write code that has locality!
 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far apart in time

 How can you achieve locality?
 Proper choice of algorithm

 Loop transformations

82 Autumn 2015 Memory and Caches

University of Washington

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n + j] += a[i*n + k]*b[k*n + j];

}

83

i

j

memory access pattern?

Autumn 2015 Memory and Caches

University of Washington

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 64 bytes = 8 doubles

 Cache size C << n (much smaller than n, not left-shifted by n)

 First iteration:
 n/8 + n = 9n/8 misses

(omitting matrix c)

 Afterwards in cache:
(schematic)

* =

n

* =

8 doubles wide
84

n/8 misses

…

n
 m

isse
s

each item in column in
different cache line

spatial locality:
chunks of 8 items in a row
 in same cache line

Autumn 2015 Memory and Caches

University of Washington

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 64 bytes = 8 doubles

 Cache size C << n (much smaller than n)

 Other iterations:
 Again:

n/8 + n = 9n/8 misses
(omitting matrix c)

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

* =

8 wide

85 once per element Autumn 2015 Memory and Caches

University of Washington

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */

 for (i1 = i; i1 < i+B; i1++)

 for (j1 = j; j1 < j+B; j1++)

 for (k1 = k; k1 < k+B; k1++)

 c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=

Block size B x B
86 Autumn 2015 Memory and Caches

University of Washington

Cache Miss Analysis
 Assume:

 Cache block = 64 bytes = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block

 2n/B * B2/8 = nB/4
(omitting matrix c)

 Afterwards in cache
(schematic)

* =

* =

Block size B x B

n/B blocks

87

B2 elements per block, 8 per cache line

n/B blocks per row,
n/B blocks per column

Autumn 2015 Memory and Caches

University of Washington

Cache Miss Analysis
 Assume:

 Cache block = 64 bytes = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 Other (block) iterations:
 Same as first iteration

 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

* =

Block size B x B

n/B blocks

88 Autumn 2015 Memory and Caches

University of Washington

Summary

 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 If B = 8 difference is 4 * 8 * 9 / 8 = 36x

 If B = 16 difference is 4 * 16 * 9 / 8 = 72x

 Suggests largest possible block size B, but limit 3B2 < C!

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array element used O(n) times!

 But program has to be written properly

89 Autumn 2015 Memory and Caches

University of Washington

Cache-Friendly Code

 Programmer can optimize for cache performance
 How data structures are organized

 How data are accessed

 Nested loop structure

 Blocking is a general technique

 All systems favor “cache-friendly code”
 Getting absolute optimum performance is very platform specific

 Cache sizes, line sizes, associativities, etc.

 Can get most of the advantage with generic code

 Keep working set reasonably small (temporal locality)

 Use small strides (spatial locality)

 Focus on inner loop code

90 Autumn 2015 Memory and Caches

University of Washington

Intel Core i7 Cache Hierarchy

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

91 Autumn 2015 Memory and Caches

University of Washington

The Memory Mountain

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

Core i7 Haswell

2.1 GHz

32 KB L1 d-cache

256 KB L2 cache

8 MB L3 cache

64 B block size

Slopes

of spatial

locality

Ridges

of temporal

locality

L1

Mem

L2

L3

Aggressive

prefetching

Autumn 2015 Memory and Caches 92

