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Roadmap 

1 

car *c = malloc(sizeof(car)); 

c->miles = 100; 

c->gals = 17; 

float mpg = get_mpg(c); 

free(c); 

Car c = new Car(); 

c.setMiles(100); 

c.setGals(17); 

float mpg = 

    c.getMPG(); 

get_mpg: 

    pushq   %rbp 

    movq    %rsp, %rbp 

    ... 

    popq    %rbp 

    ret 

Java: C: 

Assembly 
language: 

Machine 
code: 

0111010000011000 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

Computer 
system: 

OS: 

Memory & data 
Integers & floats 
Machine code & C 
x86 assembly 
Procedures & stacks 
Arrays & structs 
Memory & caches 
Processes 
Virtual memory 
Memory allocation 
Java vs. C 
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Memory Allocation Example 

char big_array[1L<<24];  /* 16 MB */ 

char huge_array[1L<<31]; /*  2 GB */ 

 

int global = 0; 

 

int useless() { return 0; } 

 

int main () 

{ 

    void *p1, *p2, *p3, *p4; 

    int local = 0; 

    p1 = malloc(1L << 28); /* 256 MB */ 

    p2 = malloc(1L << 8);  /* 256  B */ 

    p3 = malloc(1L << 32); /*   4 GB */ 

    p4 = malloc(1L << 8);  /* 256  B */ 

 /* Some print statements ... */ 

} 

not drawn to scale 

Where does everything go? 

Stack 

Text 

Data 

Heap 

Shared 
Libraries 
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How does execution time grow with SIZE? 

3 

 

int array[SIZE];   

int A = 0;   

 

for (int i = 0 ; i < 200000 ; ++ i) {          

 for (int j = 0 ; j < SIZE ; ++ j) {                 

  A += array[j];          

 }   

} 

SIZE 

TIME 

Plot 
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Actual Data 

4 
SIZE 

Ti
m

e
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Making memory accesses fast! 

 Cache basics 

 Principle of locality 

 Memory hierarchies 

 Cache organization 

 Program optimizations that consider caches 

5 Autumn 2015 Memory and Caches 



University of Washington 

Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Can process at least 
256 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 
Latency 
100 cycles 

Problem: lots of waiting on memory 

6 

cycle = single fixed-time 
 machine step Autumn 2015 Memory and Caches 
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Problem: Processor-Memory Bottleneck 

Main 
Memory 

CPU Reg 

Processor performance 
doubled about  
every 18 months Bus bandwidth 

evolved much slower 

Core 2 Duo: 
Can process at least 
256 Bytes/cycle 

Core 2 Duo: 
Bandwidth 
2 Bytes/cycle 
Latency 
100 cycles 

Solution: caches 

7 

Cache 

cycle = single fixed-time 
 machine step Autumn 2015 Memory and Caches 
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Cache 

 English definition: a hidden storage space  
for provisions, weapons, and/or treasures 
 

 

 CSE definition: computer memory with short access time 
used for the storage of frequently or recently used 
instructions or data (i-cache and d-cache) 
 
more generally, 
 
used to optimize data transfers between system elements 
with different characteristics (network interface cache, I/O 
cache, etc.) 
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General Cache Mechanics 

9 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

7 9 14 3 Cache 

Memory 
• Larger, slower, cheaper memory. 
• Viewed as partitioned into “blocks” 

or “lines” 

Data is copied in block-sized 
transfer units 

• Smaller, faster, more expensive 
memory.  

• Caches a subset of the blocks 
(a.k.a. lines) 
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General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

7 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

14 
Block b is in cache: 
Hit! 
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General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

7 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 

12 

12 

12 

Block b is stored in cache 
• Placement policy: 

determines where b goes 
•Replacement policy: 

determines which block 
gets evicted (victim) 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 

 Why is this important? 

 

 

 

 

block 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 

 Spatial locality?   

 

 

block 
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Why Caches Work 

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently 

 

 Temporal locality:   
 Recently referenced items are likely  

to be referenced again in the near future 

 Spatial locality:   
 Items with nearby addresses tend  

to be referenced close together in time 

 

 How do caches take advantage of this? 

 

 

 

block 

block 
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Example: Any Locality? 

sum = 0; 

for (i = 0; i < n; i++) 

  sum += a[i]; 

return sum; 
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Example: Any Locality? 

 Data: 
 Temporal: sum referenced in each iteration 

 Spatial: array a[] accessed in stride-1 pattern 

 Instructions: 
 Temporal: cycle through loop repeatedly 

 Spatial: reference instructions in sequence 

 

 Being able to assess the locality of code is a crucial skill 
for a programmer 
 

sum = 0; 

for (i = 0; i < n; i++) 

  sum += a[i]; 

return sum; 
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Locality Example #1 

int sum_array_rows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 

18 

a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 
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Locality Example #1 

int sum_array_rows(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (i = 0; i < M; i++) 

        for (j = 0; j < N; j++) 

            sum += a[i][j]; 

    return sum; 

} 

19 

  1: a[0][0] 

  2: a[0][1] 

  3: a[0][2] 

  4: a[0][3] 

  5: a[1][0] 

  6: a[1][1] 

  7: a[1][2] 

  8: a[1][3] 

  9: a[2][0] 

10: a[2][1] 

11: a[2][2] 

12: a[2][3] 

stride-1 
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a 
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a 
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[0] 

Layout in Memory 

M = 3, N=4 

a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 

76 is just one possible starting address of array a 
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Locality Example #2 

int sum_array_cols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 

20 

a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 
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  1: a[0][0] 

  2: a[1][0] 

  3: a[2][0] 

  4: a[0][1] 

Locality Example #2 

int sum_array_cols(int a[M][N]) 

{ 

    int i, j, sum = 0; 

 

    for (j = 0; j < N; j++) 

        for (i = 0; i < M; i++) 

            sum += a[i][j]; 

    return sum; 

} 

21 

a[0][0] a[0][1] a[0][2] a[0][3] 

a[1][0] a[1][1] a[1][2] a[1][3] 

a[2][0] a[2][1] a[2][2] a[2][3] 

  5: a[1][1] 

  6: a[2][1] 

  7: a[0][2] 

  8: a[1][2] 

  9: a[2][2] 

10: a[0][3] 

11: a[1][3] 

12: a[2][3] 

stride-N 
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Layout in Memory 

Order  
Accessed 

M = 3, N=4 
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Locality Example #3 

int sum_array_3d(int a[M][N][L]) 

{ 

    int i, j, k, sum = 0; 

 

    for (i = 0; i < N; i++) 

        for (j = 0; j < L; j++) 

            for (k = 0; k < M; k++) 

                sum += a[k][i][j]; 

    return sum; 

} 

 What is wrong with this code? 

 How can it be fixed? 

22 Autumn 2015 Memory and Caches 
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Locality Example #3 

int sum_array_3d(int a[M][N][L]) 

{ 

    int i, j, k, sum = 0; 

 

    for (i = 0; i < N; i++) 

        for (j = 0; j < L; j++) 

            for (k = 0; k < M; k++) 

                sum += a[k][i][j]; 

    return sum; 

} 

 What is wrong with this code? 

 How can it be fixed? 
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Making memory accesses fast! 

 Cache basics 

 Principle of locality 

 Memory hierarchies 

 Cache organization 

 Program optimizations that consider caches 
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Cost of Cache Misses 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

 Cache hit time of 1 cycle 
 Miss penalty of 100 cycles 

 

25 

cycle = single fixed-time 
 machine step 
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Cost of Cache Misses 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

 Cache hit time of 1 cycle 
 Miss penalty of 100 cycles 
 

 Average access time: 

 97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles 

 99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles 

 

 

 This is why “miss rate” is used instead of “hit rate” 

26 

cycle = single fixed-time 
 machine step 

check the cache every time 
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Cache Performance Metrics 

 Miss Rate 
 Fraction of memory references not found in cache (misses / accesses) 

= 1 - hit rate 

 Typical numbers (in percentages): 

 3% - 10% for L1 

 Can be quite small (e.g., < 1%) for L2, depending on size, etc. 

 Hit Time 
 Time to deliver a line in the cache to the processor 

 Includes time to determine whether the line is in the cache 

 Typical hit times: 4 clock cycles for L1; 10 clock cycles for L2 

 Miss Penalty 
 Additional time required because of a miss 

 Typically 50 - 200 cycles for missing in L2 & going to main memory 
(Trend: increasing!) 
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Can we have more than one cache? 

 Why would we want to do that? 
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Memory Hierarchies 

 Some fundamental and enduring properties of hardware and 
software systems: 
 Faster storage technologies almost always cost more per byte and have 

lower capacity 

 The gaps between memory technology speeds are widening 

 True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc. 

 Well-written programs tend to exhibit good locality 

 

 These properties complement each other beautifully 

 

 They suggest an approach for organizing memory and storage 
systems known as a memory hierarchy 
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An Example Memory Hierarchy 

30 

registers 

on-chip L1 
cache (SRAM) 

main memory 
(DRAM) 

local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

remote secondary storage 
(distributed file systems, web servers) 

Local disks hold files 
retrieved from disks on 
remote network servers 

Main memory holds disk blocks 
retrieved from local disks 

off-chip L2 
cache (SRAM) 

L1 cache holds cache lines retrieved from L2 cache 

CPU registers hold words retrieved from L1 cache 

L2 cache holds cache lines retrieved 
from main memory 

Smaller, 
faster, 
costlier 
per byte 
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An Example Memory Hierarchy 

31 

registers 

on-chip L1 
cache (SRAM) 

main memory 
(DRAM) 

local secondary storage 
(local disks) 

Larger,   
slower,  
cheaper  
per byte 

remote secondary storage 
(distributed file systems, web servers) 

off-chip L2 
cache (SRAM) 

explicitly program-controlled 
(e.g. refer to exactly %rax, %rbx) 

Smaller, 
faster, 
costlier 
per byte 

program sees “memory”; 
hardware manages caching 

transparently 
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Memory Hierarchies 

 Fundamental idea of a memory hierarchy: 
 For each level k, the faster, smaller device at level k serves as a cache for 

the larger, slower device at level k+1. 

 Why do memory hierarchies work? 
 Because of locality, programs tend to access the data at level k more 

often than they access the data at level k+1.  

 Thus, the storage at level k+1 can be slower, and thus larger and 
cheaper per bit. 

 Big Idea:  The memory hierarchy creates a large pool of 
storage that costs as much as the cheap storage near the 
bottom, but that serves data to programs at the rate of the 
fast storage near the top. 
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Intel Core i7 Cache Hierarchy 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 0 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 3 

… 

L3 unified cache 

(shared by all cores) 

Main memory 

Processor package 

L1 i-cache and d-cache: 
32 KB,  8-way,  
Access: 4 cycles 

 
L2 unified cache: 

256 KB, 8-way,  
Access: 11 cycles 
 

L3 unified cache: 
8 MB, 16-way, 
Access: 30-40 cycles 
 

Block size: 64 bytes for 
all caches. 
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Making memory accesses fast! 

 Cache basics 

 Principle of locality 

 Memory hierarchies 

 Cache organization 

 Program optimizations that consider caches 
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Cache Organization 

 Where should data go in the cache? 
 We need a mapping from memory addresses to specific locations in the 

cache to make checking the cache for an address fast 

 Otherwise each memory access requires “searching the entire 
cache” (slow!) 

 What is a data structure that provides fast lookup? 
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Aside: Hash Tables for Fast Lookup 

Autumn 2015 36 Memory and Caches 
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Aside: Hash Tables for Fast Lookup 
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000 

001 

010 

011 

100 

101 

110 

111 
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2 
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7 

Insert: 
 

000001 

000101 

110011 

101010 

100111 
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Where should we put data in the cache? 

38 

00 

01 

10 

11 

Index 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Data 

Memory Cache 

 How can we compute this mapping?  

address mod cache size 

same as 
low-order log2(cache size) bits 
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Where should we put data in the cache? 

39 

00 

01 

10 

11 

Index 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Data 

Memory Cache 

Collision. 

Hmm.. The cache might get confused later! 

Why? And how do we solve that? 
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Use tags to record which location is cached 

40 

00 

01 

10 

11 

Index 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Tag Data 

00 

?? 

01 

01 

Memory Cache 

tag = rest of address bits 
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What’s a cache block? (or cache line) 

41 
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Byte 

Address 
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3 

Index 

0 

 

1 

 

2 
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5 
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7 

 

Block (line) 

number 

block/line size = ? 

typical block/line sizes: 
32 bytes, 64 bytes 
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A puzzle. 

 What can you infer from this: 

 

 Cache starts empty 

 Access (addr, hit/miss) stream: 

 

 (10, miss), (11, hit), (12, miss) 
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A puzzle. 

 What can you infer from this: 

 

 Cache starts empty 

 Access (addr, hit/miss) stream: 

 

 (10, miss), (11, hit), (12, miss) 

43 

block size >= 2 bytes block size < 8 bytes 
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Problems with direct mapped caches? 

 

 direct mapped: 

 Each memory address can 

be mapped to exactly one 

index in the cache. 

 What happens if a  

 program uses addresses  

 2, 6, 2, 6, 2, …? 

 

 
 

00 

01 

10 

11 

Index 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 
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1100 

1101 
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Memory 

Address 
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Associativity 

 What if we could store data in any place in the cache? 
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Associativity 
 What if we could store data in any place in the cache? 

 That might slow down caches (more complicated hardware), so 
we do something in between. 

 Each address maps to exactly one set. 
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 Set 
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3 

 Set 

0 

1 

 Set 

1-way 

8 sets, 

1 block each 

2-way 

4 sets, 

2 blocks each 

4-way 

2 sets, 

4 blocks each 

0 

 Set 

8-way 

1 set, 

8 blocks 

direct mapped fully associative 
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Now how do I know where data goes? 
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m-bit Address 

k bits (m-k-n) bits 
n-bit Block 

Offset  Tag Index 
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What’s a cache block? (or cache line) 
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Byte 

Address 
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Index 
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Block (line) 

number 

block/line size = ? 

typical block/line sizes: 
32 bytes, 64 bytes 
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Now how do I know where data goes? 

49 

m-bit Address 

k bits (m-k-n) bits 
n-bit Block 

Offset  Tag Index 

4-bit Address 

? bits ? bits 
?-bits Block 

Offset     

Our example used a 22-block cache with 21 bytes per 

block. Where would 13 (1101) be stored? 
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Example placement in set-associative caches 

 Where would data from address 0x1833 be placed? 
 Block size is 16 bytes.  

 0x1833 in binary is 00...0110000 011 0011. 

 

 

0 
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6 
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 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 

m-bit Address 

k bits (m-k-n) bits 
n-bit Block 

Offset  Tag Index 

k = ?  k = ?  k = ?  
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Example placement in set-associative caches 

 Where would data from address 0x1833 be placed? 
 Block size is 16 bytes.  

 0x1833 in binary is 00...0110000 011 0011. 

 

 
m-bit Address 

k bits (m-k-4) bits 
4-bit Block 

Offset  Tag Index 

k = 3  k = 2 k = 1 

0 

1 

2 

3 

4 

5 

6 

7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 
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Block replacement 

 Any empty block in the correct set may be used for storing data. 

 If there are no empty blocks, which one should we replace? 

0 

1 

2 

3 

4 

5 

6 

7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 
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Block replacement 

 Replace something, of course, but what? 
 

0 

1 

2 

3 

4 

5 

6 

7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 
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Block replacement 

 Replace something, of course, but what? 

 Obvious for direct-mapped caches, what about set-associative? 
 

0 

1 

2 

3 

4 

5 

6 

7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 
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Block replacement 

 Replace something, of course, but what? 

 Caches typically use something close to least recently used (LRU) 

 (hardware usually implements “not most recently used”) 

 

0 

1 

2 

3 

4 

5 

6 

7 

 Set 

0 

1 

2 

3 

 Set 

0 

1 

 Set 

1-way associativity 

8 sets, 1 block each 

2-way associativity 

4 sets, 2 blocks each 

4-way associativity 

2 sets, 4 blocks each 
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Another puzzle. 

 What can you infer from this: 

 

 Cache starts empty 

 Access (addr, hit/miss) stream 

 

 (10, miss); (12, miss); (10, miss) 
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Another puzzle. 

 What can you infer from this: 

 

 Cache starts empty 

 Access (addr, hit/miss) stream 

 

 (10, miss); (12, miss); (10, miss) 

57 

12 is not in the same 
block as 10 

12’s block replaced 10’s block 

direct-mapped cache 
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General Cache Organization (S, E, B) 

E = 2e lines per set  (we say “E-way”) 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes of data per cache line (the data block) 

cache size: 
S x E x B  data bytes 
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Cache Read 

E = 2e lines per set 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes of data per cache line (the data block) 

t bits s bits b bits 

Address of byte in memory: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 
• Check if any line in set 

has matching tag 
•Yes + line valid: hit 
• Locate data starting 

at offset 
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Example: Direct-Mapped Cache (E = 1) 

S = 2s sets 

Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

find set 
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Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match?: yes = hit valid?   + 

block offset 

tag 
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Example: Direct-Mapped Cache (E = 1) 
Direct-mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match?: yes = hit valid?   + 

int (4 Bytes) is here 

block offset 

No match: old line is evicted and replaced 
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E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

find set 

65 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 
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0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

compare both 

valid?  +  match: yes = hit 

block offset 

tag 
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0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

E-way Set-Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

valid?  +  match: yes = hit 

block offset 

short int (2 Bytes) is here 

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), … 

67 

compare both 
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Types of Cache Misses 

 Cold (compulsory) miss 
 Occurs on first access to a block 

 Conflict miss 
 Conflict misses occur when the cache is large enough, but multiple data 

objects all map to the same slot 

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time 

 direct-mapped caches have more conflict misses than 
n-way set-associative (where n is a power of 2 and n  > 1) 

 Capacity miss 
 Occurs when the set of active cache blocks (the working set)  

is larger than the cache (just won’t fit) 
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What about writes? 

 Multiple copies of data exist: 
 L1, L2, possibly L3, main memory 

 What is the main problem with that? 
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What about writes? 

 Multiple copies of data exist: 
 L1, L2, possibly L3, main memory 

 What to do on a write-hit? 
 Write-through: write immediately to memory, all caches in between. 

 Write-back: defer write to memory until line is evicted (replaced) 

 Need a dirty bit to indicate if line is different from memory or not 

 What to do on a write-miss? 
 Write-allocate(“fetch on write”): load into cache, update line in cache. 

 Good if more writes or reads to the location follow 

 No-write-allocate(“write around”): just write immediately to memory. 

 Typical caches: 
 Write-back + Write-allocate, usually 

 Write-through + No-write-allocate, occasionally 

71 

why? 
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Write-back, write-allocate example 

72 

0xBEEF Cache 

Memory 

U 

0xCAFE 

0xBEEF 

0 

T 

U 

dirty bit 

Autumn 2015 Memory and Caches 

tag (there is only one set in this tiny cache, so the tag is the entire address!) 

In this example we are sort of  
ignoring block offsets. Here a block 
holds 2 bytes (16 bits, 4 hex digits).  
 
Normally a block would be much  
bigger and thus there would be  
multiple items per block.  While only  
one item in that block would be  
written at a time, the entire line would  
be brought into cache. 

Contents of memory stored at address U 
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Write-back, write-allocate example 

73 

0xBEEF Cache 

Memory 

U 

0xCAFE 

0xBEEF 

0 

T 

U 

mov 0xFACE, T 

dirty bit 
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0xBEEF U 0 

Write-back, write-allocate example 

74 

0xCAFE Cache 

Memory 

T 

0xCAFE 

0xBEEF 

T 

U 

mov 0xFACE, T 

dirty bit 0xCAFE 0 

Autumn 2015 Memory and Caches 

Step 1: Bring T into cache 



University of Washington 

0xBEEF U 0 

Write-back, write-allocate example 

75 

0xCAFE Cache 

Memory 

T 

0xCAFE 

0xBEEF 

T 

U 

mov 0xFACE, T 

dirty bit 0xFACE 1 
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to cache only and set 
dirty bit. 
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0xBEEF U 0 

Write-back, write-allocate example 

76 

0xCAFE Cache 

Memory 

T 

0xCAFE 

0xBEEF 

T 

U 

mov 0xFACE, T mov 0xFEED, T 

dirty bit 0xFACE 1 0xFEED 
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Write hit! 
Write 0xFEED to  

cache only 
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0xBEEF U 0 

Write-back, write-allocate example 

77 

0xCAFE Cache 

Memory 

T 

0xCAFE 

0xBEEF 

T 

U 

mov 0xFACE, T mov 0xFEED, T mov U, %rax 

dirty bit 0xFACE 1 0xFEED 
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Write-back, write-allocate example 

78 

0xBEEF Cache 

Memory 

U 

0xFEED 

0xBEEF 

0 

T 

U 

mov 0xFACE, T mov 0xFEED, T mov U, %rax 

dirty bit 
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1. Write T back to memory  
since it is dirty. 

2. Bring U into the cache so  
we can copy it into %rax 
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Back to the Core i7 to look at ways 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 0 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 3 

… 

L3 unified cache 

(shared by all cores) 

Main memory 

Processor package 

L1 i-cache and d-cache: 
32 KB,  8-way,  
Access: 4 cycles 

 
L2 unified cache: 

256 KB, 8-way,  
Access: 11 cycles 
 

L3 unified cache: 
8 MB, 16-way, 
Access: 30-40 cycles 
 

Block size: 64 bytes for 
all caches. 

79 

slower, but 
more likely 
to hit 
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Where else is caching used? 
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Software Caches are More Flexible 

 Examples 
 File system buffer caches, web browser caches, etc. 

 

 Some design differences 
 Almost always fully-associative 

 so, no placement restrictions 

 index structures like hash tables are common (for placement) 

 Often use complex replacement policies 

 misses are very expensive when disk or network involved 

 worth thousands of cycles to avoid them 

 Not necessarily constrained to single “block” transfers 

 may fetch or write-back in larger units, opportunistically 
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Optimizations for the Memory Hierarchy 

 Write code that has locality! 
 Spatial: access data contiguously 

 Temporal: make sure access to the same data is not too far apart in time 

 How can you achieve locality? 
 Proper choice of algorithm 

 Loop transformations 
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Example: Matrix Multiplication 

a b 

i 

j 

* 

c 

= 

c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i++) 

 for (j = 0; j < n; j++) 

             for (k = 0; k < n; k++) 

          c[i*n + j] += a[i*n + k]*b[k*n + j]; 

} 
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i 

j 

memory access pattern? 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 64 bytes = 8 doubles 

 Cache size C << n (much smaller than n, not left-shifted by n) 

 

 First iteration: 
 n/8 + n = 9n/8 misses 

(omitting matrix c) 

 

 

 Afterwards in cache: 
(schematic) 

* = 

n 

* = 

8 doubles wide 
84 

n/8 misses 

… 

n
 m

isse
s 

each item in column in 
different cache line 

spatial locality: 
chunks of 8 items in a row 
 in same cache line 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 64 bytes = 8 doubles 

 Cache size C << n (much smaller than n) 

 

 Other iterations: 
 Again: 

n/8 + n = 9n/8 misses 
(omitting matrix c) 

 

 

 Total misses: 
 9n/8 * n2 = (9/8) * n3  

n 

* = 

8 wide 
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Blocked Matrix Multiplication 
c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i+=B) 

 for (j = 0; j < n; j+=B) 

             for (k = 0; k < n; k+=B) 

   /* B x B mini matrix multiplications */ 

                  for (i1 = i; i1 < i+B; i1++) 

                      for (j1 = j; j1 < j+B; j1++) 

                          for (k1 = k; k1 < k+B; k1++) 

                       c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1]; 

} 

a b 

i1 

j1 

* 

c 

= 

Block size B x B 
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Cache Miss Analysis 
 Assume:  

 Cache block = 64 bytes = 8 doubles 

 Cache size C << n (much smaller than n) 

 Three blocks       fit into cache: 3B2 < C 

 

 First (block) iteration: 
 B2/8 misses for each block 

 2n/B * B2/8 = nB/4 
(omitting matrix c) 

 

 

 Afterwards in cache 
(schematic) 

* = 

* = 

Block size B x B 

n/B blocks 

87 

B2 elements per block, 8 per cache line 

n/B blocks per row,  
n/B blocks per column 
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Cache Miss Analysis 
 Assume:  

 Cache block = 64 bytes = 8 doubles 

 Cache size C << n (much smaller than n) 

 Three blocks       fit into cache: 3B2 < C 

 

 Other (block) iterations: 
 Same as first iteration 

 2n/B * B2/8 = nB/4 

 

 

 Total misses: 
 nB/4 * (n/B)2 = n3/(4B) 

* = 

Block size B x B 

n/B blocks 
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Summary 

 No blocking:   (9/8) * n3 

 Blocking: 1/(4B) * n3 

 If B = 8    difference is 4 * 8 * 9 / 8   = 36x 

 If B = 16  difference is 4 * 16 * 9 / 8 = 72x 
 

 Suggests largest possible block size B, but limit 3B2 < C! 
 

 Reason for dramatic difference: 
 Matrix multiplication has inherent temporal locality: 

 Input data: 3n2, computation 2n3 

 Every array element used O(n) times! 

 But program has to be written properly 
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Cache-Friendly Code 

 Programmer can optimize for cache performance 
 How data structures are organized 

 How data are accessed 

 Nested loop structure 

 Blocking is a general technique 

 All systems favor “cache-friendly code” 
 Getting absolute optimum performance is very platform specific 

 Cache sizes, line sizes, associativities, etc. 

 Can get most of the advantage with generic code 

 Keep working set reasonably small (temporal locality) 

 Use small strides (spatial locality) 

 Focus on inner loop code 
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Intel Core i7 Cache Hierarchy 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 0 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 3 

… 

L3 unified cache 

(shared by all cores) 

Main memory 

Processor package 

L1 i-cache and d-cache: 
32 KB,  8-way,  
Access: 4 cycles 

 
L2 unified cache: 

256 KB, 8-way,  
Access: 11 cycles 
 

L3 unified cache: 
8 MB, 16-way, 
Access: 30-40 cycles 
 

Block size: 64 bytes for 
all caches. 
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The Memory Mountain 

128m

32m

8m
2m

512k
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32k
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Stride (x8 bytes) 

Core i7 Haswell 

2.1 GHz 

32 KB L1 d-cache 

256 KB L2 cache 

8 MB L3 cache 

64 B block size 

Slopes  

of spatial 

locality 

Ridges  

of temporal 

locality 

L1 

Mem 

L2 

L3 

Aggressive 

prefetching 
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