Memory & data

Integers & floats

x86 assembly

Processes

Java vs. C

Arrays & structs

Virtual memory

Memory allocation

Memory & caches

Machine code & C

Procedures & stacks

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->qals = 17;
float mpg = get mpg(c);
free(c);
```

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Assembly language:

```
get mpg:
    pushq
            %rbp
             %rsp, %rbp
    movq
             %rbp
    popq
    ret
```

OS:

Windows 8. Mac

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```


Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Two possible representations

■ 52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

Two possible representations

■ 52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value 17 bits with two set to 1
 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits
- Can we do better?

Autumn 2015

Integers & Floats

Two better representations

■ Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte

- Fits in one byte
- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?

Two better representations

■ Binary encoding of all 52 cards – only 6 bits needed

low-order 6 bits of a byte

- Fits in one byte
- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?
- Binary encoding of suit (2 bits) and value (4 bits) separately

Also fits in one byte, and easy to do comparisons

Compare Card Suits

```
#define SUIT MASK
                   0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
   //return (card1 & SUIT MASK) == (card2 & SUIT MASK);
returns int
                                               equivalent
           SUIT_MASK = 0x30 = 0 0
                                       0
                                 suit
                                      value
char hand[5];  // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
     sameSuitP(card1, card2) ) { ... }
```

Compare Card Suits

```
#define SUIT_MASK 0x30
int sameSuitP(char card1, char card2) {
   return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
   //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

```
SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0 

suit value
```

```
char hand[5];
char card1, card2;
card1 = hand[0];
card2 = hand[1];
...
if ( sameSuitP(card1, card2) ) { ... }
```

Compare Card Values

```
#define VALUE MASK
                    0x0F
int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE MASK) >
          (unsigned int) (card2 & VALUE MASK));
          VALUE\_MASK = 0x0F = 0
                                suit
                                      value
char hand[5];
             // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
   ( greaterValue(card1, card2) ) { ... }
```

Compare Card Values

```
char hand[5];
char card1, card2;
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- There are only 2^w distinct bit patterns of W bits, so...
 - Can not represent all the integers
 - Unsigned values: 0 ... 2^w-1
 - Signed values: -2^{W-1} ... 2^{W-1}-1
- Reminder: terminology for binary representations

```
"Most-significant" or "Least-significant" or "low-order" bit(s) "low-order" bit(s)
```

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+...+2^{N-1}=2^{N}-1$
- Add and subtract using the normal "carry" and "borrow" rules, just in binary.

How would you make signed integers?

Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127
- But, we need to let about half of them be negative
 - Use the high-order bit to indicate negative: call it the "sign bit"
 - Call this a "sign-and-magnitude" representation
 - Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 011111111_2$ is non-negative
 - $0x85 = 10000101_2$ is negative
 - $0x80 = 10000000_2$ is negative...

Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
 - 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude.

Most Significant Bit

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude.
 (Unfortunate side effect: there are two representations of 0!)

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude.
 (Unfortunate side effect: there are two representations of 0!)
 - Another problem: arithmetic is cumbersome.

How do we solve these problems?

Two's Complement Negatives

How should we represent -1 in binary?

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

e.g. unsigned 1010_2 :

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$$

2's compl. 1010₂:

$$-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$$

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

e.g. **unsigned** 1010₂:

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$$

2's compl. 1010₂:

$$-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$$

- -1 is represented as $1111_2 = -2^3 + (2^3 1)$ All negative integers still have MSB = 1.
- Advantages: single zero, simple arithmetic
- To get negative representation of any integer, take bitwise complement and then add one!

$$\sim x + 1 == -x$$

Autumn 2015 Integers & Floats

4-bit Unsigned vs. Two's Complement

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^3$$
 x 1 + 2^2 x 0 + 2^1 x 1 + 2^0 x 1

4-bit Unsigned vs. Two's Complement

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^{3}$$
 x 1 + 2^{2} x 0 + 2^{1} x 1 + 2^{0} x 1

Integers & Floats

4-bit Unsigned vs. Two's Complement

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2^W

Examples:

4	0100	4	0100	- 4	1100
+ 3	+ 0011	– 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

Two's Complement

Why does it work?

Put another way, for all positive integers x, we want:

```
Bit representation of x
+ Bit representation of -x

0 (ignoring the carry-out bit)
```

- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
00000001
+???????? (we want whichever bit string gives the right result)
00000000
```

```
00000010 00000011
+???????? +????????
00000000 00000000
```

Two's Complement

Why does it work?

Put another way, for all positive integers x, we want:

```
Bit representation of x
+ Bit representation of -x

0 (ignoring the carry-out bit)
```

- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
00000001
+1111111 (we want whichever bit string gives the right result)
10000000
```

```
00000010 00000011
+???????? +????????
00000000 0000000
```

Two's Complement

Why does it work?

Put another way, for all positive integers x, we want:

```
Bit representation of x
+ Bit representation of -x

0 (ignoring the carry-out bit)
```

- This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

```
+1111111 (we want whichever bit string gives the right result)
10000000
```

Unsigned & Signed Numeric Values

bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps:

$$6 + 4 = ? 15U + 2U = ?$$

If you compute a number that is too small (negative), it wraps:

$$-7 - 3 = ? 0U - 2U = ?$$

- The CPU may be capable of "throwing an exception" for overflow on signed values.
 - It won't for <u>unsigned</u>.
- But C and Java just cruise along silently when overflow occurs... Oops.

Conversion Visualized

■ Two's Complement → Unsigned

Overflow/Wrapping: Unsigned

addition: drop the carry bit

Modular Arithmetic

Overflow/Wrapping: Two's Complement

addition: drop the carry bit

_	1
+	2
	1

$$0110 + 0011 \\ 1001$$

Modular Arithmetic

Values To Remember

Unsigned Values

- UMin = 0
 - **•** 000...0
- UMax = $2^w 1$
 - **•** 111...1

Two's Complement Values

- TMin = -2^{w-1}
 - **1**00...0
- TMax = $2^{w-1} 1$
 - **•** 011...1
- Negative one
 - 111...1 OxF...F

Values for W = 32

	Decimal	Hex	Binary
UMax	4,294,967,296	FF FF FF FF	11111111 11111111 11111111 11111111
TMax	2,147,483,647	7F FF FF FF	01111111 11111111 11111111 11111111
TMin	-2,147,483,648	80 00 00 00	10000000 00000000 00000000 00000000
-1	-1	FF FF FF FF	11111111 11111111 11111111 11111111
0	0	00 00 00 00	00000000 00000000 00000000 00000000

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Use "U" suffix to force unsigned:
 - 0U, 4294967259U

Signed vs. Unsigned in C

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
• tx = (int) ux;
• uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
tx = ux;uy = ty;
```

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?

Signed vs. Unsigned in C

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
• tx = (int) ux;
• uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
tx = ux;uy = ty;
```

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?
 - Bits are unchanged, just interpreted differently!

Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, then signed values are implicitly cast to <u>unsigned</u>.
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648 TMAX = 2,147,483,647**

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483648	>	signed
2147483647 U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Casting Surprises

- If you mix unsigned and signed in a single expression, then signed values are implicitly cast to <u>unsigned</u>
 (The bit pattern does not change, bits are just interpreted differently.)
- Examples for W = 32:
 Reminder: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Interpret the bits as:
0 0000 0000 0000 0000 0000 0000 0000	0U 0000 0000 0000 0000 0000 0000 0000	==	Unsigned
-1 1111 1111 1111 1111 1111 1111 1111	0 0000 0000 0000 0000 0000 0000 0000	<	Signed
-1 1111 1111 1111 1111 1111 1111 1111	0U 0000 0000 0000 0000 0000 0000 0000	>	Unsigned
2147483647 0111 1111 1111 1111 1111 1111 1111	-2147483648 1000 0000 0000 0000 0000 0000 0000	>	Signed
2147483647U 0111 1111 1111 1111 1111 1111 1111	-2147483648 1000 0000 0000 0000 0000 0000 0000	<	Unsigned
-1 1111 1111 1111 1111 1111 1111 1111	-2 1111 1111 1111 1111 1111 1111 1110	>	Signed
(unsigned) -1 1111 1111 1111 1111 1111 1111 1111	-2 1111 1111 1111 1111 1111 1111 1110	>	Unsigned
2147483647 0111 1111 1111 1111 1111 1111 1111	2147483648U 1000 0000 0000 0000 0000 0000 0000	<	Unsigned
2147483647 0111 1111 1111 1111 1111 1111 1111	(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000	>	Signed

Sign Extension

■ What happens if you convert a 32-bit signed integer to a 64-bit signed integer?

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

8-bit representations

00001001

1000001

11111111

00100111

In C: casting between unsigned and signed just reinterprets the same bits.

Sign Extension

0010 4-bit 2

00000010 8-bit 2

1 1 0 0 4-bit -4

????1100 8-bit -4

Sign Extension

Just adding zeroes to the front does not work

Sign Extension

Just making the first bit=1 also does not work

Sign Extension

Need to extend the sign bit to all "new" locations

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```
short int x = 12345;
int        ix = (int) x;
short int y = -12345;
int        iy = (int) y;
```

	Decimal	Hex	Binary
x	12345	30 39	00110000 01101101
ix	12345	00 00 30 39	00000000 00000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	11111111 11111111 11001111 11000111

Shift Operations

- Left shift: x << n
 - Shift bit vector x left by n positions
 - Throw away extra bits on left
 - Fill with 0s on right
- Right shift: x >> n
 - Shift bit-vector x right by n positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x

v		01)
X	>>	9 4	

Argument x	00100010
x << 3	
Logical: x >> 2	
Arithmetic: x >> 2	

Argument x	10100010
x << 3	
Logical: x >> 2	
Arithmetic: x >> 2	

The behavior of >> in C depends on the compiler! It is *arithmetic* shift right in GCC. In Java: >>> is logical shift right; >> is arithmetic shift right.

Shift Operations

- Left shift: x << n
 - Shift bit vector x left by n positions
 - Throw away extra bits on left
 - Fill with 0s on right
- Right shift: x >> n
 - Shift bit-vector x right by n positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x

Argument x	00100010
x << 3	00010 <i>000</i>
Logical: x >> 2	<i>00</i> 011000
Arithmetic: x >> 2	<i>00</i> 011000

Argument x	10100010
x << 3	00010 <i>000</i>
Logical: x >> 2	<i>00</i> 101000
Arithmetic: x >> 2	11 101000

x >> 9?

Shifts by n < 0 or n >= size of x are undefined e.g. if x is a 32-bit int, shifts by >= 32 bits are undefined.

The behavior of >> in C depends on the compiler! It is *arithmetic* shift right in GCC. In Java: >>> is logical shift right; >> is arithmetic shift right.

What happens when...

■ x >> n?

■ x << n?

What happens when...

 \blacksquare x >> n: $\frac{\text{divide}}{\text{divide}}$ by 2^n

■ x << n: <u>multiply</u> by 2ⁿ

Shifting is faster than general multiply or divide operations

General Form:

x << n

x >> n

$$x = 27;$$

00011011

 $x*2^n$

$$y = x << 2;$$

y == 108

logical shift left:

shift in zeros from the right

$x/2^n$

logical shift right:

shift in zeros from the left

rounding (down)

unsigned

$$x = 237;$$

$$y = x >> 2;$$

$$y == 59$$

51

11101101

General Form:

x << n

x >> n

signed

$$x = -101;$$

10011011

 $x*2^n$

$$y = x << 2;$$

y == 108

logical shift left:

shift in zeros from the right

overflow

arithmetic shift right:

shift in copies of most significant bit from the left

rounding (down)

11101101

signed

x = -19;

y = x >> 2;

v == -5

Shifts by n < 0 or n >= size of x are undefined

General Form:

x << n

x >> n

 $x*2^n$

logical shift left:

shift in zeros from the right

rounding (down)

x/2ⁿ

logical shift right:

shift in zeros from the left

unsigned

$$x = 175;$$

$$y = x >> 3;$$

$$y == 21$$

General Form:

x << n

x >> n

01001001

 $x*2^n$

y = x << 3;

y == 72

01001000

logical shift left:

shift in zeros from the right

rounding (down)

overflow

 $x/2^n$

11110011

signed

x = -13;

y = x >> 3;

y == -2

arithmetic shift right:

shift in copies of most significant bit from the left

Using Shifts and Masks

Extract the 2nd most significant byte of an integer?

x 01100001 01100010 01100011 01100100

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

Х	01100001 01100010 01100011 01100100	
x >> 16	00000000 00000000 01100001 01100010	
(x >> 16) & 0xFF	00000000 00000000 00000000 11111111	mask result
	00000000 00000000 00000000 01100010	resuit

Extract the sign bit of a signed integer?

Using Shifts and Masks

This picture is assuming arithmetic shifts, but process works in either case

- Extract the sign bit of a signed integer:
 - (x >> 31) & 1 need the "& 1" to clear out all other bits except LSB

Х	11100001 01100010 01100011 01100100	
x >> 31	11111111 1111111 11111111 1111111	
(x >> 31) & 0x1	00000000 00000000 00000000 00000001 00000000	mask result

х	01100001 01100010 01100011 01100100	
x >> 31	00000000 00000000 000000000	
(x >> 31) & 0x1	00000000 00000000 00000000 00000001	mask result
,	00000000 00000000 00000000 00000000	resuit

Using Shifts and Masks

- Conditionals as Boolean expressions (assuming x is 0 or 1)
 - In C: if (x) a=y else a=z; which is the same as a = x ? y : z;
 - If x==1 then a=y, otherwise x==0 and a=z
 - Can be re-written (assuming arithmetic right shift) as:
 a = (((x << 31) >> 31) & y) | (((!x) << 31) >> 31) & z);

x = 1	0000000 00000000 00000000 00000001
x << 31	10000000 00000000 00000000 00000000
((x << 31)>> 31)	11111111 11111111 11111111 11111111
y = 257	0000000 00000000 00000001 00000001
(((x << 31) >> 31) & y)	00000000 00000000 00000001 00000001

```
If x ==1, then !x = 0 and ((!x) << 31) >> 31) = 00..0; so: (00..0 & z) = 0. So:
    a = (00000000 00000000 00000001) | (00...00) (in other words a = y)
If x ==0, then !x = 1 and instead a = z.
One of two sides of the | will always be all zeroes.
```

Multiplication

■ What do you get when you multiply 9 x 9?

■ What about 2³⁰ x 3?

 $2^{30} \times 5$?

 $-2^{31} \times -2^{31}$?

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Discard *k* bits: *w* bits

Examples

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage /* Declaration of library function memcpy */

```
void* memcpy(void* dest, void* src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void* user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
   memcpy(user dest, kbuf, len);
    return len;
}
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-j}^{i} b_k \cdot 2^{j}$

Fractional Binary Numbers

Value

Representation

101.11₂

47/64

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only <u>exactly</u> represent numbers of the form $x * 2^y$ (y can be negative)
- Other rational numbers have repeating bit representations

Value:

Binary Representation:

0.01010101[01]...₂

0.001100110011[0011]...2

 $0.0001100110011[0011]..._{2}$

Fixed Point Representation

Implied binary point. Two example schemes:

```
#1: the binary point is between bits 2 and 3
b<sub>7</sub> b<sub>6</sub> b<sub>5</sub> b<sub>4</sub> b<sub>3</sub> [.] b<sub>2</sub> b<sub>1</sub> b<sub>0</sub>
#2: the binary point is between bits 4 and 5
b<sub>7</sub> b<sub>6</sub> b<sub>5</sub> [.] b<sub>4</sub> b<sub>3</sub> b<sub>2</sub> b<sub>1</sub> b<sub>0</sub>
```

....

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed *range* and fixed *precision*
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point

Analogous to scientific notation

- In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
- In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2⁻⁴

We have to divvy up the bits we have (e.g., 32) among:

- the sign (1 bit)
- the significand
- the exponent

IEEE Floating Point

IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- now supported by all major CPUs

Driven by numerical concerns

- Numerical analysts predominated over hardware designers in defining standard
- Nice standards for rounding, overflow, underflow, but...
- But... hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Representation in memory:

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
---	-----	------

Precisions

Single precision: 32 bits

Double precision: 64 bits

Finite representation means not all values can be represented exactly. Some will be approximated.

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0? Or special or undefined values like 1.0/0.0?

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

Special values:

zero:

$$s == 0$$
 exp == 00...0 frac == 00...0

 $-+\infty,-\infty$:

$$exp == 11...1$$
 frac == 00...0

$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- NaN ("Not a Number"): exp == 11...1 frac!= 00...0 Results from operations with undefined result: sqrt(-1), $\infty - \infty$, $\infty * 0$, etc.
- Note: exp=11...1 and exp=00...0 are reserved, limiting exp range...

Normalized Values

$$V = (-1)^{S} * M * 2^{E}$$

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - **exp** is an *unsigned* value ranging from 1 to 2^k-2 (k == # bits in **exp**)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
 - These enable negative values for E, for representing very small values
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when **111...1** ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$V = (-1)^{S} * M * 2^{E}$$

```
frac
exp
    k
```

n

- Value: float f = 12345.0;
 - **12345**₁₀ = 11000000111001₂ $= 1.1000000111001_2 \times 2^{13}$ (normalized form)
- Significand:

$$M = 1.1000000111001_{2} = 1 + 1 * 2^{-1} + 1 * 2^{-8} + 1 * 2^{-9} + 1 * 2^{-10} + 1 * 2^{-13} = 1.5069580078125_{10}$$
frac= $1000000111001_{2} = 1 + 1 * 2^{-1} + 1 * 2^{-8} + 1 * 2^{-9} + 1 * 2^{-10} + 1 * 2^{-13} = 1.5069580078125_{10}$

■ Exponent: E = exp - Bias, so exp = E + Bias

$$E = 13_{10}$$

 $Bias = 127_{10}$
 $exp = 140_{10} = 10001100_{2}$

Result:

0 10001100 10000001110010000000000

$$V = (-1)^{S} * M * 2^{E} = (-1)^{O} * 1.5069580078125_{10} * 2^{13}_{10}$$

Floating Point Operations

 Unlike the representation for integers, the representation for floating-point numbers is <u>not exact</u>

Floating Point Operations: Basic Idea

$$V = (-1)^{S} * M * 2^{E}$$

- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} \times \mathbf{y})$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into frac

Floating Point Addition

 $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume F1 > F2

■ Exact Result: (-1)^s M 2^E

- Sign *s*, significand *M*:
 - Result of signed align & add
- Exponent E: E1

Line up the binary points

Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

Floating Point Multiplication

```
(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}
```

■ Exact Result: $(-1)^s M 2^E$

• Sign *s*: *s1* ^ *s2*

■ Significand *M*: *M1* * *M2*

• Exponent *E*: *E1* + *E2*

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Rounding modes

Possible rounding modes (illustrate with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	-\$1
■ Round-down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round-up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
Round-to-nearest	\$1	\$2	55	55	55
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- Round-to-even avoids statistical bias in repeated rounding.
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point

Mathematical Properties of FP Operations

- **Exponent overflow yields** $+\infty$ or $-\infty$
- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point operations are not always associative or distributive, due to rounding!
 - **(**3.14 + 1e10) 1e10 != 3.14 + (1e10 1e10)
 - 1e20 * (1e20 1e20) != (1e20 * 1e20) (1e20 * 1e20)

Floating Point in C

C offers two levels of precision

float single precision (32-bit)
double double precision (64-bit)

- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Floating Point in C

86

Conversions between data types:

- Casting between int, float, and double changes the bit representation.
- int \rightarrow float
 - May be rounded; overflow not possible
- int \rightarrow double or float \rightarrow double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long int → double
 - Rounded or exact, depending on word size
- double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 -> 1, -1.99 -> -1
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- other related bugs
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
 float f2 = 0.0;
  int i;
  for (i=0; i<10; i++) {
   f2 += 1.0/10.0;
 printf("0x\%08x 0x\%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);
 f1 = 1E30;
 f2 = 1E-30;
  float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "ves" : "no" );
  return 0;
```

```
$ ./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
```

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Many more details for the curious...

- Denormalized values to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

We won't be using or testing you on any of these extras in 351.

Denormalized Values

- Condition: exp = 000...0
- **Exponent value:** $E = \exp{-Bias} + 1$ (instead of $E = \exp{-Bias}$)
- Significand coded with implied leading 0: $M = 0 \cdot xxx...x_2$
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - $exp = 000...0, frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **■** Condition: **exp** = **111...1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp frac <i>E</i> Value	
Denormalized	0 0000 000-6 0 0 0000 001-6 $1/8*1/64 = 1/512$ 0 0000 010-6 $2/8*1/64 = 2/512$	closest to zero
numbers	0 0000 110-6 $6/8*1/64 = 6/512$ 0 0000 111-6 $7/8*1/64 = 7/512$	largest denorm
	0 0001 000 -6 $8/8*1/64 = 8/512$ 0 0001 001 -6 $9/8*1/64 = 9/512$ 	smallest norm
Normalized numbers	$0 \ 0110 \ 110-1 \ 14/8*1/2 = 14/16$ $0 \ 0110 \ 111-1 \ 15/8*1/2 = 15/16$ $0 \ 0111 \ 0000 \ 8/8*1 = 1$	closest to 1 below
	0 0111 0010 9/8*1 = 9/8 0 0111 0100 10/8*1 = 10/8 	ciosest to 1 above
	0 1110 1107 14/8*128 = 224 0 1110 1117 15/8*128 = 240 0 1111 000n/ainf	largest norm

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

■ Double $\approx 1.8 * 10^{308}$

{single, double}

	Description	exp	frac	Numeric Value
ı	■ Zero	0000	0000	0.0
ı	■ Smallest Pos. Denorm. ■ Single $\approx 1.4 * 10^{-45}$ ■ Double $\approx 4.9 * 10^{-324}$	0000	0001	2-{23,52} * 2-{126,1022}
I	 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$
ı	Smallest Pos. Norm.Just larger than largest de	0001 enormalized		1.0 * 2- {126,1022}
ı	■ One	0111	0000	1.0
ı	 Largest Normalized Single ≈ 3.4 * 10³⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Multiplication

 $(-1)^{s1}$ M1 2^{E1} * $(-1)^{s2}$ M2 2^{E2}

■ Exact Result: (-1)^s M 2^E

• Sign s: s1 ^ s2 // xor of s1 and s2

Significand M: M1 * M2

Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Floating Point Addition

$$(-1)^{s1}$$
 M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

■ "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither d nor f is NaN

- 1) x == (int) (float) x
- 2) x == (int) (double) x
- 3) f == (float)(double) f
- 4) d == (double) (float) d
- 5) f == -(-f);
- 6) 2/3 == 2/3.0
- 7) (d+d2)-d == d2