University of Washington

Roadmap
C.

Java:

c->miles = 100;
c->gals = 17;

float mpg = get mpg(c);

car *c = malloc(sizeof(car)) ;

Car ¢ = new Car|();
c.setMiles (100) ;
c.setGals(f7T7-
float mpg =

Integers & floats

free (c) ; c.getMPG() ;
Assembly get mpg:
. pushg %rbp
language: movq $rsp, %rbp
popa %rbp
ret $
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

Autumn 2015

Integers & Floats

University of Washington

Integers

m Representation of integers: unsigned and signed
m Casting

m Arithmetic and shifting

m Sign extension

Autumn 2015 Integers & Floats 2

University of Washington

But before we get to integers....

m Encode a standard deck of playing cards.
m 52 cards in 4 suits

" How do we encode suits, face cards?
m What operations do we want to make easy to implement?

= Which is the higher value card?
= Are they the same suit?

4 a3 34.&3&&2&&;&&& Eé&é % %
* * T R B B s
ol F| e | e k| e BE| kE| e b bRl e el
4 e 3o 20024020010:20:200 x
' - L RN RN X 3*3
v v
J vl v ¥ eel ool ool ool vl vl e
a 29 (39 |lvw|ivw |ve Zo’v ?,0'0 vw '.'20,0
v v v |ve|ve|ve POU DH4
9 5l & 2 & all aall aall aall aall aall a®
7 20 130 [t e 30 0|50 0 3000 §0‘0 2:: 'E:,:
¢ ¢ ¢ oo o] o] le
o] %0 | 0,0
o @3] @ Y e el e el 6 el e o] 4 03 ¢ o 70

Autumn 2015 Integers & Floats 3

University of Washington

Two possible representations

m 52 cards — 52 bits with bit corresponding to card set to 1

I EE
low-order 52 bits of 64-bit word

= “One-hot” encoding

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required

Autumn 2015 Integers & Floats 4

Two possible representations

m 52 cards — 52 bits with bit corresponding to card set to 1

I EE
low-order 52 bits of 64-bit word

= “One-hot” encoding

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required

m 4 bits for suit, 13 bits for card value — 17 bits with two set to 1

" Pair of one-hot encoded values
= Easier to compare suits and values
= Still an excessive number of bits

m Can we do better?

Autumn 2015 Integers & Floats 5

University of Washington

Two better representations

m Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte
= Fits in one byte

= Smaller than one-hot encodings.
= How can we make value and suit comparisons easier?

Autumn 2015 Integers & Floats 6

University of Washington

Two better representations

m Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte
= Fits in one byte

= Smaller than one-hot encodings.
= How can we make value and suit comparisons easier?

m Binary encoding of suit (2 bits) and value (4 bits) separately

suit value

= Also fits in one byte, and easy to do comparisons

Autumn 2015 Integers & Floats 7

University of Washington

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns

Compa re Ca rd SUitS all but the bits of interestinvto 0

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card2) {
return (! ((cardl & SUIT MASK) * (card2 & SUIT MASK)));
//return (cardl & SUIT MASK) == (card2 & SUIT MASK);

}

Feturns int] SUIT MASK=0x30= |0|0f1|1|0|0]0]0 \Lequivalent]

suit value

char hand([5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand|[O0];

card2 = hand[1l];

if (sameSuitP(cardl, card2)) { ... }

Autumn 2015 Integers & Floats 8

University of Washington

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns

Compa re Ca rd SUitS all but the bits of interestinvto 0

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card2) {
return (! ((cardl & SUIT MASK) * (card2 & SUIT MASK)));
//return (cardl & SUIT MASK) == (card2 & SUIT MASK);

SUIT_MASK =0x30=|0]of1|1]|o]ofofo

suit value

char hand[5];

char cardl, card2;
cardl = hand|[O0];
card2 = hand[1l];

if (sameSuitP(cardl, card2)) { ... }

Autumn 2015 Integers & Floats 9

University of Washington

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns

Compa re Ca rd Values all but the bits of interestinvto 0

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2) {
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK)) ;

}
VALUE MASK =0xOF =|0]0]0j0}|1]|1}|1]1
suit value
char hand([5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand|[O0];
card2 = hand[1l];

if (greaterValue(cardl, card2)) { ... }

Autumn 2015 Integers & Floats 10

University of Washington

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns

Compa re Ca rd Values all but the bits of interestinvto 0

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2) {
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK)) ;

VALUE_MASK =0xOF =|0|0j0j0}1}1}j1]1

suit value

char hand[5];

char cardl, card2;
cardl = hand|[O0];
card2 = hand[1l];

if (greaterValue(cardl, card2)) { ... }

Autumn 2015 Integers & Floats 11

University of Washington

Encoding Integers

m The hardware (and C) supports two flavors of integers:
® unsigned — only the non-negatives
= signed — both negatives and non-negatives

m There are only 2% distinct bit patterns of W bits, so...
= Can not represent all the integers
= Unsigned values: 0 ... 2%-1
" Signed values: -2W1 _,, 2W-1.1

m Reminder: terminology for binary representations

“Most-significant” or “Least-significant” or
“high-order” bit(s) “low-order” bit(s)

/

0110010110101001

Autumn 2015 Integers & Floats 12

University of Washington

Unsigned Integers

m Unsigned values are just what you expect
" b,b.b.b,bb,bby=b,27+b.25+b.25+ ... + b2 + b,2°
= Useful formula: 142+4+8+...+2N-1=2N_1

m Add and subtract using the normal 00111111 63
«“ ” “« »” . . . +00001000 + 8
rr nd “borrow” rules, just in binary. el
carry a ’) Y 01000111 71

m How would you make signed integers?

Autumn 2015 Integers & Floats 13

Signed Integers: Sign-and-Magnitude

m Let's do the natural thing for the positives

"= They correspond to the unsigned integers of the same value

= Example (8 bits): 0x00=0, 0x01 =1, ..., Ox7F = 127
m But, we need to let about half of them be negative

= Use the high-order bit to indicate negative: call it the “sign bit”
= Call this a “sign-and-magnitude” representation

= Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bitis 0
= Ox7F=01111111, is non-negative
= Ox85 =10000101, is negative
= 0x80 = 10000000, is negative...

Autumn 2015 Integers & Floats 14

University of Washington

Signed Integers: Sign-and-Magnitude

m How should we represent -1 in binary?

= 10000001,
Use the MSB for + or -, and the other bits to give magnitude.

[Most Signifi;rm

Autumn 2015 Integers & Floats 15

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= 10000001,
Use the MSB for + or -, and the other bits to give magnitude.
(Unfortunate side effect: there are two representations of 0!)

Autumn 2015 Integers & Floats 16

Sign-and-Magnitude Negatives

m How should we represent -1 in binary?

= 10000001,
Use the MSB for + or -, and the other bits to give magnitude.
(Unfortunate side effect: there are two representations of 0!)

= Another problem: arithmetic is cumbersome.

= Example:
4-31=4+(-3)
0100 _4
+1011
1111

How do we solve these problems?

Autumn 2015 Integers & Floats 17

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?

Autumn 2015 Integers & Floats 18

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.
b, ,=1adds -2%! to thevalue. fori<w-1: b,=1adds +2' to the value.

, | ~
~~ b, | b5 v T b,

w-1 w-2

Autumn 2015 Integers & Floats

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.
b, ,=1adds -2%! to thevalue. fori<w-1: b,=1adds +2' to the value.

, | ~
~~ b, | b5 v T b,

w-1 w-2

e.g. unsigned 1010,:

1*23 +0*22+1*21 + 0*2°=10,,
2’s compl. 1010,:

-1*23 4+ 0*22+1*21 + 0*2° = -6,

Autumn 2015 Integers & Floats

University of Washington

Two’s Complement Negatives

m How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.
b, ,=1adds -2%! to thevalue. fori<w-1: b,=1adds +2' to the value.

, | ~
~~ b, | b5 v T b,

w-1 w-2

e.g. unsigned 1010,:
1*23 +0*22+1*21 + 0*2°=10,,
2’s compl. 1010,:
-1*23 4+ 0*22+1*21 + 0*2° = -6,
m -lisrepresentedas 1111, =-23+ (23-1)
All negative integers still have MSB = 1.

m Advantages: single zero, simple arithmetic

m To get negative representation of
any integer, take bitwise complement
and then add one!
~X + 1 == -x

Autumn 2015 Integers & Floats

University of Washington

4-bit Unsigned vs. Two’s Complement
1011

23x1+22x0+2'x1+2%x1 23x14+22x0+2'x1+2%9x 1

Autumn 2015 8 7 Integers & Floats

University of Washington

4-bit Unsigned vs. Two’s Complement
1011

23x1+22x0+2'x1+2%x1 23x14+22x0+2'x1+2%9x 1

H ‘\{ (math) difference = 16 = 2*]/’ >

15

1111
1110
1101

1100

0000
0001
0010

0011

Autumn 2015 8 7 Integers & Floats

University of Washington

4-bit Unsigned vs. Two’s Complement

1 011
23x1+22x0+2'x1+2%x1 23x14+22x0+21x1+2%x1
/7
. -5
H (math) difference = 16 = 24]

Autumn 2015 8 7 Integers & Floats

University of Washington

Two’s Complement Arithmetic

m The same addition procedure works for both unsigned and
two’s complement integers
= Simplifies hardware: only one algorithm for addition
= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2%

m Examples:

4 0100 0100 -4 1100

+ 3 + 0011 + 1101 + 3 + 0011

=7 =0111 =] 1 0001 — 1 1111
drop carry = 0001

Autumn 2015 Integers & Floats 25

University of Washington

Two’s Complement

m Why does it work?
= Put another way, for all positive integers x, we want:

Bit representation of x
+ Bit representation of -x
0 (ignoring the carry-out bit)

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+ (we want whichever bit string gives the right result)
00000000
00000010 00000011

+ P27V 777° + P27V 777°

00000000 00000000

Autumn 2015 Integers & Floats 26

University of Washington

Two’s Complement

m Why does it work?
= Put another way, for all positive integers x, we want:

Bit representation of x
+ Bit representation of -x
0 (ignoring the carry-out bit)

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+11111111 (we want whichever bit string gives the right result)
00000000
00000010 00000011

+ +

00000000 00000000

Autumn 2015 Integers & Floats 27

University of Washington

Two’s Complement

m Why does it work?
= Put another way, for all positive integers x, we want:

Bit representation of x
+ Bit representation of -x
0 (ignoring the carry-out bit)

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?

00000001

+11111111 (we want whichever bit string gives the right result)
00000000
00000010 00000011

+11111110 +11111101
00000000 00000000

Autumn 2015 Integers & Floats 28

University of Washington

Unsigned & Signed Numeric Values

bits Unsigned| Signed _ . . o
0000 0 0 m Signed and unsigned integers have limits.
0001 1 1 = |f you compute a number that is too big
0010 2 2 (positive), it wraps:

0011 3 3 6+4=7 15U+2U ="

0100 4 4 = |f you compute a number that is too
0101 5 5 small (negative), it wraps:

0110 6 6 7-3=?0U-2U=7?

0111 7 7

1000 8 -8

1001 9 -7 _

1010 10 6 m The CPU may be capable of “throwing an
1011 11 i exception” for overflow on signed values.
1100 12 —4 " [t won't for unsigned.

1101 13 -3 m But C and Java just cruise along silently
1110 14 —2 when overflow occurs... Oops.

1111 15 -1

Autumn 2015 Integers & Floats 29

University of Washington

Conversion Visualized

m Two’s Complement — Unsigned

: . Um
® QOrdering Inversion — >
® UMax-1
" Negative — Big Positive
_ F. TMax +1 Unsigned
TMax @ *® TMax

Range

2's Complement 0

@ *® 0
Range 1 .J/ =
-2

TMin

Autumn 2015 Integers & Floats 30

University of Washington

Overflow/Wrapping: Unsigned

addition: drop the carry bit

15 1111 15— 0~
j-_lj* +1883')(])- p 11101111 00000001
1

1101 0010
1100 0011

1010 0101
1001 0110
1000 0111

Modular Arithmetic

Autumn 2015 Integers & Floats 31

University of Washington

Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

-1 1111 N
+_2 + 0010 ~2 1111 0000 \+1
1 10001 Suer oo\
=4 [1100 0011 |+ 3
—-5 1011 .
6 0110 -6 1011(2)01 5
+3 + 0011
A 1001 NS T 7w
-7/

Modular Arithmetic

Integers & Floats 32

University of Washington

Values To Remember

m Unsigned Values m Two’s Complement Values

= UMin = 0 = TMin = —2w-1
= 000...0 = 100...0

= UMax = 2V -1 = TMax = 2w1-1
= 111...1 = 011...1

"= Negative one

= 111...1 OxF...F
Values for W = 32

I S S,

UMax
TMax
TMin

-1

0

4,294,967,296
2,147,483,647

-2,147,483,648

1
0

11111111

01111111

10000000
11111111
00000000

11111111
11111111
00000000
11111111
00000000

11111111
11111111
00000000
11111111
00000000

11111111
11111111
00000000
11111111
00000000

University of Washington

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Use “U” suffix to force unsigned:
= 0U, 42949672590

Autumn 2015 Integers & Floats 34

Signed vs. Unsigned in C ! ! !
m Casting

= int tx, ty;

= unsigned ux, uy;

Explicit casting between signed & unsigned:
= tx = (int) ux;

= uy = (unsigned) ty;

Implicit casting also occurs via assignments and function calls:
= tx = ux;
= uy = ty;
= The gcc flag -Wsign-conversion produces warnings for implicit casts,
but -Wall does not!

= How does casting between signed and unsigned work?

What values are going to be produced?

Autumn 2015 Integers & Floats 35

Signed vs. Unsigned in C ! ! !
m Casting

= int tx, ty;

= unsigned ux, uy;

Explicit casting between signed & unsigned:
= tx = (int) ux;

= uy = (unsigned) ty;

Implicit casting also occurs via assignments and function calls:
» tX = ux;
= uy = ty;
= The gcc flag -Wsign-conversion produces warnings for implicit casts,
but -Wall does not!
How does casting between signed and unsigned work?

What values are going to be produced?

= Bits are unchanged, just interpreted differently!

Autumn 2015 Integers & Floats 36

Casting Surprises 111
. . o 060
m Expression Evaluation

" |f you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

" Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 TMAX =2,147,483,647

m Constant, Constant, Relation Evaluation
0 ouU == unsigned
-1 0 < signed
-1 ouU > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Autumn 2015 Integers & Floats 37

« If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned

(The bit pattern does not change, bits are just interpreted differently.)

+ Examples for W = 32:

Reminder: TMIN = -2,147,483,648

TMAX = 2,147,483,647

Relation | Interpret

Constant, Constant, e bits as:
0 ou == Unsigned
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

-1 0 < Signed
1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000

-1 ou > Unsigned
1111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0000

2147483647 -2147483648 > Signed
0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000

2147483647U -2147483648 < Unsigned
0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000

-1 -2 > Signed
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110

(unsigned) -1 -2 > Unsigned
1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1110

2147483647 2147483648U < Unsigned
0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000

2147483647 (int) 2147483648U S Signed
0111 1111 1111 1111 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0000

Autumn 2015

Integers & Floats

Casting Surprises

38

University of Washington

Sign Extension

m What happens if you convert a 32-bit signed integer to a 64-
bit signed integer?

Autumn 2015 Integers & Floats 39

University of Washington

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

m X = Xyg e Xpyet s Xipe1 » Xz 1+-» X
L]

k copies of MSB < w >
X, v v v v v
< k >< w >

Autumn 2015 Integers & Floats 40

8-bit representations

00001001 10000001

11111111 00100111

In C: casting between unsigned and signed just reinterprets the same bits.

ttttttttttttttttttttttttt

Sign Extension

0010 4-bit 2

00000010 sbit2

1100 4-bit -4

22221100 sbi-4

ttttttttttttttttttttttttt

University of Washington

Sign Extension
0010 4-bit 2

00000010 sbit2

1100 4-bit -4

00001100 sbit

Just adding zeroes to the front does not work

Autumn 2015 Integers & Floats 43

University of Washington

Sign Extension
0010 4-bit 2

00000010 sbit2

1100 4-bit -4

10001100 8-bit -116

Just making the first bit=1 also does not work

Autumn 2015 Integers & Floats 44

Sign Extension

uuuuu

University of Washington

0010 4-bit 2

0000010 subit2

1100 4-bit -4

1111100 8bit-

Need to extend the sign bit to all “new” locations

Integers & Floats 45

Sign Extension Example

m Converting from smaller to larger integer data type
m C automatically performs sign extension (Java too)

short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) y;

Decimal Hex Binary

x 12345 30 39 00110000 0O1l101101
ix 12345 | 00 00 30 39 00000000 00000000 00110000 O1101101
Yy -12345 CF C7 11001111 11000111
iy -12345(FF FF CF C7 11111111 11111111 11001111 11000111

Autumn 2015 Integers & Floats 46

University of Washington

Shift Operations

m Left shift: X << N Argument x 00100010

= Shift bit vector x left by n positions X<<3

= Throw away extra bits on left
= Fill with Os on right

m Rightshift: x>>n
= Shift bit-vector x right by n positions

Logical: X >> 2

Arithmetic: x>> 2

= Throw away extra bits on right

= Logical shift (for unsigned values) Argument X 10100010

= Fill with Os on left X << 3
= Arithmetic shift (for signed values .
, (. g. . _) Logical: X >>2
= Replicate most significant bit on left
= Maintains sign of x Arithmetic: x>>2

X >>97?

The behavior of >> in C depends on the compiler! It is arithmetic shift right in GCC.
In Java: >>> is logical shift right; >> is arithmetic shift right.

Autumn 2015 Integers & Floats 47

University of Washington

Shift Operations

m Left shift: X << N Argument x 00100010

= Shift bit vector x left by n positions x << 3| 00010000
= Throw away extra bits on left

= Fill with Os on right
= Rightshift: x>>n Arithmetic: x>>2| 00011000

Logical: x>>2| 00011000

= Shift bit-vector x right by n positions

= Throw away extra bits on right

= Logical shift (for unsigned values) Argument X 10100010

= Fill with Os on left x << 3] 00010000
= Arithmetic shift (for signed values)

- _ Logical: x>>2| 00101000
= Replicate most significant bit on left
= Maintains Sign of x Arithmetic: x>>2| 11101000
X >> 97 Shifts by n < 0 or n >= size of x are undefined

e.g. if x is a 32-bit int, shifts by >= 32 bits are undefined.
The behavior of >> in C depends on the compiler! It is arithmetic shift right in GCC.
In Java: >>> is logical shift right; >> is arithmetic shift right.

Autumn 2015 Integers & Floats 48

University of Washington

What happens when...

E X>>n?

B X<<n?

Autumn 2015 Integers & Floats 49

University of Washington

What happens when...
E X>>n: divide by 2"
B X<<n: multiply by 2"

Shifting is faster than general multiply or divide operations

Autumn 2015 Integers & Floats 50

General Form:

Shifting and Arithmetic Example #1 x<<n

X = 27; 00011011 X*2"
y=X<<2; A//‘//// logical shift left:
y == 108 O 1 1 O 1 1 O O shift in zeros from the right
[rounding (down)
unsigned
</2" 11101101 |/ 2

logical shift right: \\>A\A \‘\A Yy =X>>2;

shift in zeros from the left y == 59

ttttttttttttttttttttttttt

University of Washington

General Form:

Shifting and Arithmetic Example #2 x<<n

- 10011011 X*2"
y=x<<; M // logical shift left:
y == 108 O 1 1 O 1 1 O O shift in zeros from the right
[overﬂoﬁ [rounding (down)
signed
x/2" 11101101 Xg=-19:
oo DN

from the left
Shifts by n < 0 or n >=size of x are undefined

uuuuu 2015 Integers & Floats 52

General Form:

Shifting and Arithmetic Example #3 x<<n

00001101 X*2"
y=X<<3; ‘/“//“// logical shift left:
y == 104 O 1 1 O 1 O O O shift in zeros from the right
[rounding (down)
unsigned
/2" 10101111 =175

logical shift right: \\A\\A\‘\ y=x>>3;

shift in zeros from the left O O O 1 O 1 O 1 y==21

uuuuuuuuuu

University of Washington

General Form:

Shifting and Arithmetic Example #4 x<<n

01001001 X*2
yEx<<3, ‘/“//H// logical shift left:
y==72 O 1 O O 1 O O O shift in zeros from the right
[overfloﬁ [rounding (down)
signed
x/2" 11110011 Xg=-13;
arithmetic shift right: y=x>>3;
shift n copies of mfst significant bit 1A>>>>>>O s

Autumn 2015 Integers & Floats 54

Using Shifts and Masks

m Extract the 2nd most significant byte of an integer?

X 01100001/0110001001100011 01100100

Autumn 2015 Integers & Floats 55

Using Shifts and Masks

m Extract the 2nd most significant byte of an integer:
= First shift, then mask: (x >> 16) & OxFF

X 01100001/0110001001100011 01100100

X>>16 00000000 00000000 01100001|01100010

00000000 00000000 00000000 11111111 |mask
00000000 00000000 00000000 01100010 |result

(x >>16) & OxFF

m Extract the sign bit of a signed integer?

Autumn 2015 Integers & Floats 56

Using Shifts and Masks

m Extract the sign bit of a signed integer:
" (x>>31)&1 -needthe “& 1” to clear out all other bits except LSB

X 100001 01100010 01100011 01100100

X >>31 11111111 1171171111 1111711171 111111

00000000 00000000 00000000 00000001 | mask
00000000 00000000 00000000 00000001 |result

(x>>31) & 0x1

X @1100001 01100010 01100011 01100100
x>>31 00000000 00000000 00000000 OOOOOOC@

00000000 00000000 00000000 00000001 | mask
00000000 00000000 00000000 00000000 |result

(x>>31) & 0x1

Autumn 2015 Integers & Floats 57

Using Shifts and Masks

m Conditionals as Boolean expressions (assuming x is 0 or 1)
" |nC:if (x) a=y else a=z; whichisthesameas a=x?y:z
= |f x==1 then a=y, otherwise x==0 and a=z

= Can be re-written () as:
a=(((x<<31)>>31)&y) | ((('x)<<31)>>31)&z);

x=1 00000000 00000000 00000000 00000001

x<< 31 10000000 00000000 00000000 00000000
((x<<31)>>31) 111117111 1111717111 1111717111 1111171111

y =257 00000000 00000000 00000001 00000001
(((x<<31)>>31)&y) | 00000000 00000000 00000001 00000001

If X ==1, then !X =0and (('x) <<31)>>31)=00..0; so: (00..0 & z) = 0. So:
a = (00000000 00000000 00000001 00000001) | (00...00) (in other words a =y)

If X ==0, then !X =1 and instead a = z.

One of two sides of the | will always be all zeroes.

Autumn 2015 Integers & Floats 58

Multiplication

m What do you get when you multiply 9 x 9?

m What about 230 x 3?

m 230x5?

m -231x-231?

Autumn 2015 Integers & Floats 59

University of Washington

Unsigned Multiplication in C

Operands: w bits u .o
* \% e oo

True Product: 2*w bits
u) V o o o o 0 o
Discard w bits: w bits UMult, (u , v) —

m Standard Multiplication Function

" |gnores high order w bits

m Implements Modular Arithmetic

UMult, (v, v)=u-v mod 2%

Autumn 2015 Integers & Floats 60

University of Washington

Power-of-2 Multiply with Shift

m Operation
" u << k gives u * 2k

= Both signed and unsigned k
u oo o0
Operands: w bits ok
S (o) YN ()i [o] EET ()]
True Product: w+k bits u- 2k coe 0| e« |00 .
Discard k bits: w bits UMult, (u , 2%) ooo 0] e« [0]0]

TMult, (u , 2F)
m Examples

" u<< 3 == u * 8

" u<< 5 -u<3 == u * 24

" Most machines shift and add faster than multiply
= Compiler generates this code automatically

Autumn 2015 Integers & Floats 61

University of Washington

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE]

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void* user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user _dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

Autumn 2015 Integers & Floats 62

University of Washington

M a I IC I O u S U Sage /* Declaration of library function memcpy */

void* memcpy (void* dest, void* src, size_t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void* user_dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_ from kernel (mybuf, -MSIZE) ;

Autumn 2015 Integers & Floats 63

University of Washington

Floating point topics

m Background: fractional binary numbers
m IEEE floating-point standard

m Floating-point operations and rounding
m Floating-pointin C

m There are many more details that we won’t cover
" |t's a 58-page standard...

Autumn 2015 Integers & Floats 64

Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation (e.g., 0.2)
® Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

m Mathematically equivalent ways of writing an expression
may compute different results

= Violates associativity/distributivity

m Never test floating point values for equality!
m Careful when converting between ints and floats!

Autumn 2015 Integers & Floats 65

University of Washington

Fractional Binary Numbers

21
2i—1

1/4

m Representation

= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: ‘
P Zbk .2k
k=-j

Autumn 2015 Integers & Floats 66

University of Washington

Fractional Binary Numbers

m Value Representation
= 5and3/4 101.11,
= 2and7/8 10.111,
= 47/64 0.101111,

m Observations

= Shift left = multiply by power of 2

= Shift right = divide by power of 2

"= Numbers of theform 0.111111..., are just below 1.0
= 1/2+1/4+1/8+..+1/2'+..=> 1.0
= Use notation 1.0 —¢

Autumn 2015 Integers & Floats 67

Limits of Representation

m Limitations:

= Even given an arbitrary number of bits, can only exactly represent
numbers of the form x * 2¥ (y can be negative)

= QOther rational numbers have repeating bit representations

Value: Binary Representation:
= 1/3 =0.333333..,,= 0.01010101[01]...,
= 1/5 = 0.001100110011[0011]...,

= 1/10 = 0.0001100110011[0011]...,

Autumn 2015 Integers & Floats 68

University of Washington

Fixed Point Representation

m Implied binary point. Two example schemes:
#1: the binary point is between bits 2 and 3
b, b beb, b, [.1b, b, by
#2: the binary point is between bits 4 and 5
b, b be [.] b, by b, b, b,

m Wherever we put the binary point, with fixed point
representations there is a trade off between the amount of
range and precision we have

m Fixed point = fixed range and fixed precision

= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers

m Hard to pick how much you need of each!

Autumn 2015 Integers & Floats 69

University of Washington

Floating Point

m Analogous to scientific notation

" |n Decimal:

= Not 12000000, but 1.2 x 107 In C: 1.2e7
= Not 0.0000012, but 1.2 x 10°® In C: 1.2e-6
" |n Binary:

= Not 11000.000, but 1.1 x 24
= Not 0.000101, but 1.01 x 2

m We have to divvy up the bits we have (e.g., 32) among:
= the sign (1 bit)
= the significand
"= the exponent

Autumn 2015 Integers & Floats 70

University of Washington

IEEE Floating Point

m |EEE 754

= Established in 1985 as uniform standard for floating point arithmetic
"= Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
" now supported by all major CPUs

m Driven by numerical concerns

®= Numerical analysts predominated over hardware designers in defining
standard

= Nice standards for rounding, overflow, underflow, but...
= But... hard to make fast in hardware
" Float operations can be an order of magnitude slower than integer

Autumn 2015 Integers & Floats 71

University of Washington

Floating Point Representation

m Numerical form:

Vo = (-1)5 * M * 2

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0)
= Exponent E weights value by a (possibly negative) power of two

Autumn 2015 Integers & Floats 72

University of Washington

Floating Point Representation

m Numerical form:

Vo = (-1)5 * M * 2

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0)
= Exponent E weights value by a (possibly negative) power of two

m Representation in memory:
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s | exp frac

Autumn 2015 Integers & Floats 73

University of Washington

Precisions

m Single precision: 32 bits

s | exp frac
1 bit 8 bits 23 bits

m Double precision: 64 bits

s | exp frac

1 bit 11 bits 52 bits

m Finite representation means not all values can be
represented exactly. Some will be approximated.

Autumn 2015 Integers & Floats 74

University of Washington

Normalization and Special Values

S E
V=(-1) *M*2 s |exp frac

m “Normalized” = M has the form 1.xxxxx
= As in scientific notation, but in binary

" 0.011 x 2> and 1.1 x 23 represent the same number, but the latter
makes better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it

m How do we represent 0.0? Or special or undefined values like
1.0/0.0?

Autumn 2015 Integers & Floats 75

University of Washington

Normalization and Special Values

S E
V=(-1) *M*2 s |exp frac

m “Normalized” = M has the form 1.xxxxx
= As in scientific notation, but in binary

" 0.011 x 2> and 1.1 x 23 represent the same number, but the latter
makes better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it.

m Special values:
= zero: s==0 exp==00..0 frac==00...0
" +00,-00: exp==11...1 frac==00...0
1.0/0.0 = -1.0/-0.0 = +oxo, 1.0/-0.0 =-1.0/0.0 = —0

= NaN (“Not a Number”): exp==11...1 £frac!=00...0
Results from operations with undefined result: sqrt(-1), oo — oo, o0 * 0, etc.

"= Note: exp=11...1 and exp=00...0 are reserved, limiting exp range...

Autumn 2015 Integers & Floats 76

University of Washington

Normalized Values

S E
V=(-1) *M*2 s |exp frac

k n
m Condition: exp# 000..0andexp#111..1
m Exponent coded as biased value: E = exp - Bias
= exp is an unsigned value ranging from 1 to 2K.2 (k == # bits in exp)
= Bigs =2K1-1
= Single precision: 127 (soexp: 1..254, E:-126...127)
= Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
= These enable negative values for E, for representing very small values

m Significand coded with implied leading 1: M = 1.xxx...x,
" xxx..X: the n bits of £frac
" Minimum when 000...0 (M =1.0)
" Maximum when 111..1 (M=2.0—¢)
= Get extra leading bit for “free”

Autumn 2015 Integers & Floats 77

University of Washington

Normalized Encoding Example

S E
V=(-1) *M*2 s |exp frac

k n

m Value: float £ = 12345.0;
= 12345, =11000000111001,
=1.1000000111001, x 23 (normalized form)

m Significand:
M = 1.,1000000111001,=1+ 1%271+ 1%278 + 1%2°° 4+ 1%2°10 4 1%2°13 = 1.5069580078125,,,
frac= 10000001110010000000000,

m Exponent: E = exp - Bias, so exp = E + Bias

E = 13,,
Bias = 1274,
exp = 140, = 10001100,
m_Result:
0/(10001100 100000011f10010000000000
S exp rac

V(1) * M * 2E = (-1)O * 1.5069580078125,, * 21310

Autumn 2015 Integers & Floats 78

University of Washington

Floating Point Operations

m Unlike the representation for integers, the representation for
floating-point numbers is not exact

Autumn 2015 Integers & Floats 79

University of Washington

Floating Point Operations: Basic Idea

S E
V=(-1) *M*2 s |exp frac

m X +. y = Round(x + y)

m X * y = Round(x * y)

m Basic idea for floating point operations:
" First, compute the exact result
= Then, round the result to make it fit into desired precision:
= Possibly overflow if exponent too large
= Possibly drop least-significant bits of significand to fit into £rac

Autumn 2015 Integers & Floats 80

Floating Point Addition

(1)t M1 21 + (-1)2 M2 2F2

Line up the binary points
Assume E1 > E2

| E1-£2 —
m Exact Result: (-1)s M 2f (=1)" M1
" Sign s, significand M: N (—1)Z M2
= Result of signed align & add
" ExponentE: El (—1)° M

m Fixing
= |f M 22, shift M right, increment E
= if M <1, shift M left k positions, decrement E by k
= Qverflow if E out of range
= Round M to fit £rac precision

Autumn 2015 Integers & Floats 81

Floating Point Multiplication

(_1)51 M1 21 * (_1)52 M2 2E2
m Exact Result: (-1)° M 2f

= Signs: s1Ns2

= Significand M: M1 * M2

" ExponentE: El1+E2
m Fixing

= |f M 22, shift M right, increment E
= |f E out of range, overflow
= Round M to fit £rac precision

Autumn 2015 Integers & Floats 82

University of Washington

Rounding modes

m Possible rounding modes (illustrate with dollar rounding):
$1.40 $1.60 $1.50 $2.50 -$1.50

Round-toward-zero S1 S1 S1 S2 -S1
Round-down (-o0) S1 S1 S1 S2 -S2
Round-up (+o0) S2 S2 S2 S3 —-S1
Round-to-nearest S1 S2 ?? ?? ??
= Round-to-even S1 S2 S2 S2 -S2

m Round-to-even avoids statistical bias in repeated rounding.

® Rounds up about half the time, down about half the time.
= Default rounding mode for IEEE floating-point

Autumn 2015 Integers & Floats 83

University of Washington

Mathematical Properties of FP Operations

m Exponent overflow yields +o0 or -0

m Floats with value +o0, -00, and NaN can be used in operations

= Result usually still +oo, -0, or NaN; sometimes intuitive, sometimes not

m Floating point operations are not always associative or
distributive, due to rounding!

= (3.14 + 1e10) - 1e10 !=3.14 + (1e10 - 1e10)
= 120 * (120 - 1e20) != (120 * 1e20) - (120 * 1e20)

Autumn 2015 Integers & Floats 84

Floating Pointin C ! ! !

m C offers two levels of precision
float single precision (32-bit)
double double precision (64-bit)

B #include <math.h>to get INFINITY and NAN constants

m Equality (==) comparisons between floating point numbers are
tricky, and often return unexpected results
= Just avoid them!

Autumn 2015 Integers & Floats 85

Floating Pointin C ! ! !

m Conversions between data types:

® Casting between int, float, and double changes the bit
representation.

" int & float

= May be rounded; overflow not possible
" int - doubleorfloat - double

= Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
" long int - double

= Rounded or exact, depending on word size
" doubleorfloat - int

= Truncates fractional part (rounded toward zero)

- E.g.1999->1,-1.99 > -1

= “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

Autumn 2015 Integers & Floats 86

University of Washington

Number Representation Really Matters ! ! !

m 1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

m 1996: Ariane 5 rocket exploded ($1 billion)

= overflow converting 64-bit floating point to 16-bit integer

m 2000: Y2K problem

" |imited (decimal) representation: overflow, wrap-around

m 2038: Unix epoch rollover

= Unix epoch = seconds since 12am, January 1, 1970

= signed 32-bit integer representation rolls over to TMin in 2038
m other related bugs

= 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
® 1997: USS Yorktown “smart” warship stranded: divide by zero
= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

Autumn 2015 Integers & Floats 87

University of Washington

Floating Point and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {
float £f1 = 1.0;
float £2 = 0.0;

int 1i;

for (i=0; 1<10; i++) {
f2 4= 1.0/10.0;

}

printf ("0x%08x 0x%08x\n", *(int*)s&fl, *(int*)&f2); $./a.out

printf ("fl = %10.8f\n", f1); 0x3£800000 0x3£800001
printf ("f2 = %10.8f\n\n", £2); f1 = 1.000000000
f2 = 1.000000119
f1 = 1E30;
f2 = 1E-30; f1l == £37? yes
float £3 = f1 + £2;
printf ("fl == £3? %s\n", fl1l == £3 ? "yes" : "no");

return 0O;

Autumn 2015 Integers & Floats 88

Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation (e.g., 0.2)
® Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

m Mathematically equivalent ways of writing an expression
may compute different results

= Violates associativity/distributivity

m Never test floating point values for equality!
m Careful when converting between ints and floats!

Autumn 2015 Integers & Floats 89

University of Washington

Autumn 2015 Integers & Floats 90

University of Washington

Many more details for the curious...

Denormalized values — to get finer precision near zero
Distribution of representable values

Floating point multiplication & addition algorithms
Rounding strategies

m We won’t be using or testing you on any of these extras in
351.

Autumn 2015 Integers & Floats 91

University of Washington

Denormalized Values

m Condition: exp =000...0

m Exponent value: E = exp — Bias + 1 (instead of E = exp — Bias)
m Significand coded with implied leading 0: M = 0 . xxx...x,

» xxX...X: bits of £frac

m Cases
" exp=000..0, frac=000..0
= Represents value 0
= Note distinct values: +0 and —0 (why?)
" exp=000..0, frac#000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced

Autumn 2015 Integers & Floats 92

University of Washington

Special Values

m Condition:exp=111...1

m Case:exp=111..1, frac=000...0

= Represents value 00 (infinity)
= QOperation that overflows
= Both positive and negative

E.g., 1.0/0.0=-1.0/-0.0=+o0, 1.0/-0.0=-1.0/0.0=-00

m Case: exp=111..1, frac#000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g., sqrt(=1), co — o0, 00 * 0

Autumn 2015 Integers & Floats 93

University of Washington

Visualization: Floating Point Encodings

| -Normalized |-Denorm ; | :+Denorm; +Normalized

I I /I\ I I -

Rl -0 +0 —

Autumn 2015 Integers & Floats 94

University of Washington

Tiny Floating Point Example

s | exp frac
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.

= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

m Same general form as IEEE Format
®" normalized, denormalized
= representation of 0, NaN, infinity

Autumn 2015 Integers & Floats 95

Dynamic Range (Positive Only)

s exp frac E Value

0O 0000 000-6 O
0 0000 001-6 1/8*1/64 = 1/512 closest to zero
0

Denormalized 0000 010-6 2/8*1/64 = 2/512

numbers
0 0000 110-6 6/8*1/64 = 6/512
0 0000 111-6 7/8*1/64 = 7/512 largest denorm
0 0001 000-6 8/8*1/64 = 8/512 smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
0 0110 110-1 14/8*1/2 = 14/16
, 0 0110 111-1 15/8*1/2 = 15/16 closest to 1 below
sermElzed g gt qn gooo sserl 0 = 1
UL 0 0111 0010 9/8*1 = 9/8 closest to 1 above
0O 0111 0100 10/8*1 = 10/8
0O 1110 1107 14/8*128 = 224
0 1110 1117 15/8*128 = 240 largest norm

0 1111 000n/ainf

Autumn 2015 Integers & Floats 96

University of Washington

Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits S |S%P frac
= f=2fraction bits 1 3 2
" Biasis231-1=3

m Notice how the distribution gets denser toward zero.

—A—A——h—— A A A A AAAAMMENMMA A AA A —A—AA A —A—A—A—
-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized Infinity

Autumn 2015 Integers & Floats 97

University of Washington

Distribution of Values (close-up view)

m 6-bit IEEE-like format
" e =3 exponent bits
= f=2fraction bits
= Biasis 3

s | exp frac

hA—h bbb A AL 060606006060 iiiii A A —h—A
-1 -0.5 0 0.5 1

¢ Denormalized A Normalized B Infinity

Autumn 2015 Integers & Floats 98

University of Washington

Interesting Numbers (single, double]
Description exp frac Numeric Value

m Zero 00...00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00...01 2~ 123,52} * - {126,1022}

" Single~1.4*10%
" Double ~4.9 * 107324

m Largest Denormalized 00..00 11..11 (1.0 — g) * 2~ {126,1022}

" Single~1.18 * 10738
" Double~ 2.2 * 107308

m Smallest Pos. Norm. 00..01 00...00 1.0 * 2~ {126,1022}
= Just larger than largest denormalized
m One 01..11 00...00 1.0
m Largest Normalized 11..10 11..11 (2.0 — g) * 2{127,1023;}

= Single~3.4 * 1038
= Double ~ 1.8 * 10308

Autumn 2015 Integers & Floats 929

University of Washington

Special Properties of Encoding

m Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

m Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
= Must consider0-=0*=0
= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

Autumn 2015 Integers & Floats 100

Floating Point Multiplication
(_1)51 |V|1 2E1 % (_1)52 |V|2 2E2

m Exact Result: (-1)°M 2F

= Sign s: sl /s2 // xor of s1 and s2
= Significand M: M1 * M2
" ExponentE: E1l+E2

m Fixing

= |f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit frac precision

Autumn 2015 Integers & Floats 101

Floating Point Addition

(1)1 M1 2E1 + (—1)2 M2 2F2

m Exact Result: (-1)°M 2F
= Sign s, significand M:

= Result of signed align & add

=" ExponentE: E1

m Fixing
If M > 2, shift M right, increment E
if M < 1, shift M left k positions, decrement E by k

Autumn 2015

Overflow if E out of range
Round M to fit frac precision

Assume E1 > E2

[« E1-£2 —|

(1)L M1

(—1)5> M2

Integers & Floats

(=1)°M

102

University of Washington

Closer Look at Round-To-Even

m Default Rounding Mode
= Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

= E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

Autumn 2015 Integers & Floats 103

University of Washington

Rounding Binary Numbers

m Binary Fractional Numbers
= “Half way” when bits to right of rounding position = 100...,

m Examples
® Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2

2 3/16 10.00110, 10.01, (>1/2—up) 21/4

27/8 10.11100, 11.00, (1/2—up) 3

25/8 10.10100, 10.10, (1/2—down) 21/2

Autumn 2015 Integers & Floats 104

University of Washington

Floating Point Puzzles jexp |frac
1 bit 8 bits 23 bits
s | exp frac
1 bit 11 bits 52 bits

m For each of the following C expressions, either:

= Argue that it is true for all argument values

= Explain why not true 1) x == (int) (float) x
int x = ..; 2) x == (int) (double) x
float £ = ..; 3) £ == (float) (double) £
double d = ..; 4) d == (double) (float) d
double d2 = ..; 5) £ == -(-f);

Assume neither 6) 2/3 == 2/3.0
d nor £ is NaN 7) (d+d2)-d == d2

Autumn 2015 Integers & Floats 105

