
University of Washington

Announcements
 On the website: cs.uw.edu/351

 Anonymous feedback form

 Need help?

 Discussion board (aka GoPost) – You can *search* the GoPost!

 Send email to cse351-staff at cse.uw.edu

 Office hours: Almost finalized, check the calendar

 Lecture slides on the web schedule (these will be linked when ready)

 Lab 0, make sure to start early – due Monday at 5pm

 Videos for optional reference – not exactly the same slides as we’ll use

 Tips for C, debugging, etc.

 Lecture content

 Video Assignment for Monday: (found on schedule)
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html

 Everyone in cse351 should be able to sign up for cse390a
 Show up on Tuesday for first class

Autumn 2015 1 Memory & data

https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html

University of Washington

Hardware: Logical View

2

CPU Memory

Disks Net USB Etc.

Bus

Autumn 2015 Memory & data

University of Washington

Hardware: Physical View

3

CPU

USB…

I/O
controller

Storage connections

Memory

Autumn 2015 Memory & data

University of Washington

Hardware: 351 View (version 0)

 CPU executes instructions; memory stores data

 To execute an instruction, the CPU must:
 fetch an instruction;

 fetch the data used by the instruction; and, finally,

 execute the instruction on the data…

 which may result in writing data back to memory.

4

Memory

CPU

?
data

instructions

Autumn 2015 Memory & data

University of Washington

Hardware: 351 View (version 1)

 The CPU holds instructions temporarily in the instruction cache

 The CPU holds data temporarily in a fixed number of registers

 Instruction and operand fetching is HW-controlled

 Data movement is (assembly language) programmer-controlled

 We’ll learn about the instructions the CPU executes –
take cse352 to find out how it actually executes them

5

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

Autumn 2015 Memory & data

University of Washington

Hardware: 351 View (version 1)

 The CPU holds instructions temporarily in the instruction cache.

 The CPU holds data temporarily in a fixed number of registers.

 Instruction fetching is HW-controlled.

 Data movement is programmer-controlled.

6

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How are data
and instructions
represented?

How does a
program find its
data in memory?

Autumn 2015 Memory & data

University of Washington

Roadmap

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

7 Autumn 2015 Memory & data

University of Washington

Memory, Data, and Addressing

 Representing information as bits and bytes

 Organizing and addressing data in memory

 Manipulating data in memory using C

 Boolean algebra and bit-level manipulations

8 Autumn 2015 Memory & data

University of Washington

9

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How are data
and instructions
represented?

Autumn 2015 Memory & data

University of Washington

Binary Representations

 Base 2 number representation
 A base 2 digit (0 or 1) is called a bit.

 Represent 35110 as 00000001010111112 or 1010111112

 Electronic implementation
 Easy to store with bi-stable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

10 Autumn 2015 Memory & data

University of Washington

Describing Byte Values

 Binary 000000002 -- 111111112

 Byte = 8 bits (binary digits)

 Decimal 010 -- 25510

 Hexadecimal 0016 -- FF16

 Byte = 2 hexadecimal (or “hex” or base 16) digits

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in the C language

 as 0xFA1D37B or 0xfa1d37b

 More on specific data types later…

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

11 Autumn 2015 Memory & data

University of Washington

12

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How does a
program find its
data in memory?

Autumn 2015 Memory & data

University of Washington

Byte-Oriented Memory Organization

 Conceptually, memory is a single, large array of bytes,
each with an unique address (index)

 The value of each byte in memory can be read and written

 Programs refer to bytes in memory by their addresses
 Domain of possible addresses = address space

 But not all values (e.g., 351) fit in a single byte…
 Store addresses to “remember” where other data is in memory

 How much memory can we address with 1-byte (8-bit) addresses?

 Many operations actually use multi-byte values

• • •

13 Autumn 2015 Memory & data

University of Washington

Machine Words

 Word size = address size = register size

 Word size bounds the size of the address space and memory
 word size = w bits => 2w addresses

 Until recently, most machines used 32-bit (4-byte) words

 Potential address space: 232 addresses
232 bytes  4 x 109 bytes = 4 billion bytes = 4GB

 Became too small for memory-intensive applications

 Current x86 systems use 64-bit (8-byte) words

 Potential address space: 264 addresses
264 bytes  1.8 x 1019 bytes = 18 billion billion bytes = 18 EB (exabytes)

14 Autumn 2015 Memory & data

University of Washington

Word-Oriented Memory Organization

 Addresses specify
locations of bytes in memory
 Address of word

 = address of first byte in word

 Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

15 Autumn 2015 Memory & data

(note: decimal
addresses)

University of Washington

Word-Oriented Memory Organization

 Addresses still specify
locations of bytes in memory
 Address of word

 = address of first byte in word

 Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

 Alignment

0000
0001
0002
0003

0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

16

0004

Autumn 2015 Memory & data

(note: decimal
addresses)

University of Washington

A Picture of Memory (32-bit view)

 A “32-bit (4-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 4 bytes

 Each cell is a byte

 A 32-bit pointer will fit
on one row

17

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

…

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

(note hex
addresses)

Autumn 2015 Memory & data

University of Washington

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes

 Each cell is a byte

 A 64-bit pointer will fit
on one row

18

0x04 0x05 0x06 0x07

0x0D 0x0E 0x0F 0x0C

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

(note hex
addresses)

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

0x09 0x0A 0x0B 0x08

University of Washington

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:
 In this type of picture, each row is composed of 8 bytes

 Each cell is a byte

 A 64-bit pointer will fit
on one row

19

0x04 0x05 0x06 0x07

0x0D 0x0E 0x0F 0x0C

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

(note hex
addresses)

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

0x09 0x0A 0x0B 0x08

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

5F 01 00 00

20

0x00

0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

0x04

Autumn 2015 Memory & data

32-bit example
(pointers are 32-bits wide)

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

5F 01 00 00

21 Autumn 2015 Memory & data

32-bit example
(pointers are 32-bits wide)

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

 A pointer to a pointer
is stored at address 0x24

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

1C 00 00 00

5F 01 00 00

22 Autumn 2015 Memory & data

32-bit example
(pointers are 32-bits wide)

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address.

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

 A pointer to a pointer
is stored at address 0x24

 The value 12 is stored
at address 0x14
 Is it a pointer?

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

1C 00 00 00

5F 01 00 00

0C 00 00 00

23 Autumn 2015 Memory & data

32-bit example
(pointers are 32-bits wide)

University of Washington

Addresses and Pointers

 A 64-bit (8-byte) word-aligned view of memory

 The value 351 is stored at address 0x08
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at
address 0x38
points to address 0x08

 A pointer to a pointer
is stored
at address 0x48

24 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

(note hex
addresses)

5F 01 00 00 00 00 00 00

08 00 00 00 00 00 00 00

38 00 00 00 00 00 00 00

64-bit example
(pointers are 64-bits wide)

University of Washington

Sizes of data types (in bytes)
Java Data Type C Data Type Typical 32-bit x86-64

boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

 long int 4 8

double double 8 8

long long long 8 8

 long double 8 16

(reference) pointer * 4 8

Data Representations

25 Autumn 2015 Memory & data

To use “bool” in C, you must #include <stdbool.h>

University of Washington

More on Memory Alignment in x86-64
 For good memory system performance, Intel recommends data

be aligned
 However the x86-64 hardware will work correctly regardless of alignment

of data.

 Aligned means: Any primitive object of K bytes must have an
address that is a multiple of K.

 This means we could expect these types to have starting
addresses that are the following multiples:

26

More about alignment later in the course
Autumn 2015 Memory & data

K Type

1 char

2 short

4 int, float

8 long, double, pointers

University of Washington

Byte Ordering

 How should bytes within a word be ordered in memory?

Example:

 Store the 4-byte (32-bit) word: 0xa1 b2 c3 d4
 In what order will the bytes be stored?

 Conventions!
 Big-endian, Little-endian

 Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little)

27 Autumn 2015 Memory & data

University of Washington

Byte Ordering

 Big-Endian (PowerPC, SPARC, The Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0xa1b2c3d4

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

a1 b2 c3 d4

d4 c3 b2 a1

28 Autumn 2015 Memory & data

University of Washington

Byte Ordering Examples
Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little endian)

00
00
00
00

39
30
00
00

x86-64

39
30
00
00

IA32

29

30
39

00
00

SPARC
(big endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

Autumn 2015 Memory & data

int x = 12345;

// or x = 0x3039;

long int y = 12345;

// or y = 0x3039;

(A long int is the size
of a word)

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Take binary machine code and generate an assembly code version

 Does the reverse of the assembler

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

30 Autumn 2015 Memory & data

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Take binary machine code and generate an assembly code version

 Does the reverse of the assembler

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

Deciphering numbers

 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse (little-endian): ab 12 00 00
31 Autumn 2015 Memory & data

University of Washington

Addresses and Pointers in C

32

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

Declares a variable, ptr, that is a pointer to
(i.e., holds the address of) an int in memory

Declares two variables, x and y, that hold
ints, and sets them to 5 and 2, respectively

Sets ptr to the address of x.
Now, “ptr points to x”

Sets y to “1 plus the value stored at the address held by ptr,
because ptr points to x, this is equivalent to y=1+x;

“Dereference ptr”

What is *(&y) ?

Autumn 2015 Memory & data

University of Washington

Assignment in C

 A variable is represented by a memory location

 Initially, it may hold any value

 int x, y;
 x is at location 0x04, y is at 0x18

33

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

F3 29 01 00

00 00 00 01

x

y

00 32 00 A7

EE EE EE EE
FE CA CE FA
00 00 00 26
00 10 00 00

96 F4 00 FF
00 00 00 00
34 17 42 00

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

* is also used with

variable declarations

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 A variable is represented by a memory location

 Initially, it may hold any value

 int x, y;
 x is at location 0x04, y is at 0x18

34

x

y

F3 29 01 00

00 00 00 01

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

35

00 00 00 00

00 00 00 01

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

36

00 00 00 00

3C D0 27 00

x

y

little endian!

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

37

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z

38

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add ???, put it in z

39

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

40

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24

Pointer arithmetic is scaled by size of target type

Pointer arithmetic
can be dangerous

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

0x18 = 24 (decimal)

 + 12

 36 = 0x24

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

 *z = y;
 What does this do?

41

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

 *z = y;
 Get value of y, put it at the address stored in z

 42

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24
3C D0 27 00

The target of a pointer is
also a memory location

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2015 Memory & data

0x00 0x01 0x02 0x03

32-bit example
(pointers are 32-bits wide)

University of Washington

Arrays in C

43 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6]; a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

a[0]
a[2]
a[4]

a[1]
a[3]
a[5]

64-bit example
(pointers are 64-bits wide)

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

44 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 01 5F

00 00 01 5F

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

45 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 01 5F

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

46 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 01 5F

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];

p 00 00 00 10 00 00 00 00

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

47 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 01 5F

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

48 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

49 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

p[1] = 0xB;

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Arrays in C

50 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

p[1] = 0xB;

00 00 00 0B

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

51 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

p[1] = 0xB;

00 00 00 0B

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

52 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

00 00 00 0B

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

53 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 10 00 00 00 00

00 00 00 0B

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

54 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 18 00 00 00 00

00 00 00 0B

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

55 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 18 00 00 00 00

00 00 00 0B

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

*p = a[1] + 1;

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

56 Autumn 2015 Memory & data

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Declaration: int a[6];

a[0]
a[2]
a[4]

a[0] = 0x015f;
a[5] = a[0];

Indexing:
The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

00 00 00 0A

00 00 01 5F

No bounds
check:

a[6] = 0xBAD;
a[-1] = 0xBAD;

00 00 0B AD

00 00 0B AD

Pointers:

{ equivalent

int* p;
p = a;
p = &a[0];
*p = 0xA;

p 00 00 00 18 00 00 00 00

00 00 00 0B

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

*p = a[1] + 1;

00 00 00 0C

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB

University of Washington

Representing strings
 A C-style string is represented by an array of bytes (char)

— Elements are one-byte ASCII codes for each character

— ASCII = American Standard Code for Information Interchange
32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

57 Autumn 2015 Memory & data

University of Washington

Null-terminated Strings

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

58

 For example, “Harry Potter” can be stored as a 13-byte array

 Why do we put a 0, or null zero, at the end of the string?
 Note the special symbol: string[12] = '\0';

 How do we compute the string length?

Autumn 2015 Memory & data

University of Washington

char s[6] = "12345";

Endianness and Strings

 Byte ordering (endianness) is not an issue for 1-byte values
 The whole array does not constitute a single value

 Individual elements are values; chars are single bytes

 Unicode characters – up to 4 bytes/character
 ASCII codes still work (just add leading zeros)

 Unicode can support the many characters in all languages in the world

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

33
34

31
32

35
00

33
34

31
32

35
00

59

C (char = 1 byte)

Autumn 2015 Memory & data

0x00

0x01

0x02

0x03

0x04

0x05

0x00

0x01

0x02

0x03

0x04

0x05 Note: 0x31 = 49 decimal = ASCII ‘1’

‘1’

‘2’

‘3’

‘4’

‘5’

‘\0’

IA32, x86-64
(little endian)

SPARC
(big endian)

University of Washington

 Code to print byte representation of data
 Any data type can be treated as a byte array by casting it to char

 C has unchecked casts. << DANGER >>

Examining Data Representations

void show_bytes(char* start, int len) {

 int i;

 for (i = 0; i < len; i++)

 printf("%p\t0x%.2x\n", start+i, *(start+i));

 printf("\n");

}

printf directives:
 %p Print pointer
 \t Tab
 %x Print value as hex
 \n New line

60

void show_int (int x) {

 show_bytes((char *) &x, sizeof(int));

}

Autumn 2015 Memory & data

University of Washington

show_bytes Execution Example

int a = 12345; // represented as 0x00003039

printf("int a = 12345;\n");

show_int(a); // show_bytes((char *) &a, sizeof(int));

Result (Linux x86-64):

int a = 12345;

0x7fffb7f71dbc 0x39

0x7fffb7f71dbd 0x30

0x7fffb7f71dbe 0x00

0x7fffb7f71dbf 0x00

61 Autumn 2015 Memory & data

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B
 ~(A & B) = ~A | ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

62 Autumn 2015 Memory & data

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B
 ~(A & B) = ~A | ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

63 Autumn 2015 Memory & data

University of Washington

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise

 All of the properties of Boolean algebra apply

 How does this relate to set operations?

 01101001
& 01010101

 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

 01010101
^ 01010101
 00000000

64 Autumn 2015 Memory & data

University of Washington

Representing & Manipulating Sets

 Representation
 A w-bit vector represents subsets of {0, …, w–1}

 aj = 1 iff j  A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

65 Autumn 2015 Memory & data

University of Washington

Bit-Level Operations in C

 & | ^ ~
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Examples (char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102

 ~0x00 --> 0xFF

~000000002 --> 111111112

 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012

 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

 Some bit-twiddling puzzles in Lab 1

66 Autumn 2015 Memory & data

University of Washington

Contrast: Logic Operations in C

 Contrast to logical operators
 && || !

 0 is “False”

 Anything nonzero is “True”

 Always return 0 or 1

 Early termination a.k.a. short-circuit evaluation

 Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p++ (avoids null pointer access, null pointer = 0x0000 0000 0000 0000)

67 Autumn 2015 Memory & data

