University of Washington

Announcements

m On the website: cs.uw.edu/351

= Anonymous feedback form
Need help?
= Discussion board (aka GoPost) — You can *search* the GoPost!

= Send email to cse351-staff at cse.uw.edu
= Office hours: Almost finalized, check the calendar

Lecture slides on the web schedule (these will be linked when ready)

Lab 0, make sure to start early — due Monday at 5pm

Videos for optional reference — not exactly the same slides as we’ll use
= Tips for C, debugging, etc.
= Lecture content

m Video Assignment for Monday: (found on schedule)
https://courses.cs.washington.edu/courses/cse351/15au/video-assisnment-1.html

m Everyone in cse351 should be able to sign up for cse390a

= Show up on Tuesday for first class

Autumn 2015 Memory & data 1

https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html

University of Washington

Hardware: Logical View

Autumn 2015

CPU

Memory

Bus

Net

USB

Memory & data

Etc.

University of Washington

Hardware: Physical View

&)
.\oo U S B (X X
(’}' PCl-Express Slots
o@ 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors
o(\ PCI Slots |
9
¥

Socket 775
Core2 Quad/
Core2 Extreme
Ready

intel P45
Chipset C P U
| / O intelicH10

: Py ‘ : B DDR2
Chipset | . £2, : 1066 +MHz
controller |§ | pp—ie— ==Ll Dual Channel
o £ sk Memory Slots
Serial ATA _
Headers ~ S Memory

Storage connections

Autumn 2015 Memory & data

University of Washington

Hardware: 351 View

-~

Instructions

Memory

\CP Y, data

m CPU executes instructions; memory stores data

m To execute an instruction, the CPU must:
= fetch an instruction;
= fetch the data used by the instruction; and, finally,
= execute the instruction on the data...
= which may result in writing data back to memory.

Autumn 2015 Memory & data 4

University of Washington

Hardware: 351 View

/[i-cache instructions

this week...

Memory

\CPU registers Y. data

The CPU holds instructions temporarily in the instruction cache
The CPU holds data temporarily in a fixed number of registers
Instruction and operand fetching is HW-controlled

Data movement is (assembly language) programmer-controlled

We'll learn about the instructions the CPU executes —
take cse352 to find out how it actually executes them

Autumn 2015 Memory & data 5

University of Washington

Hardware: 351 View

/ i-cache

take 352...

Instructions

this week...

Memory

/
How are data

and instructions

\represented? How d " cache.
m The CPU holds data temporaril Ow does a Isters.

.| program find its

m Instruction fetching is HW-con
data in memory?j

m Data movement is programme

Autumn 2015 Memory & data

University of Washington

Memory & data
Road ma p Integers & floats
. Machine code & C
C: Java:
x86 assembly
car *c = malloc(sizeof(car)); | |Car c =lnewlggr() : Procedures & stacks
— - — . . 5 ;
c->miles 100; c.setMiles () Arrays & structs
c->gals = 17; c.setGals (17) ; M 2 h
float mpg = get mpg(c) ; float mpg = emory & caches
free(c); c.getMPG () ; Processes
Y — Virtual memory
Assembly | get_mpg: Memory allocation
language: TN SR Javavs. C

movq %rsp, %rbp

popgq Srbp

ret $
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

Autumn 2015 Memory & data 7

University of Washington

Memory, Data, and Addressing

m Representing information as bits and bytes
m Organizing and addressing data in memory
m Manipulating data in memory using C

m Boolean algebra and bit-level manipulations

Autumn 2015 Memory & data 8

University of Washington

Instructions

/ i-cache

this week...

Memory

/
How are data

and instructions

\represented?

Autumn 2015 Memory & data 9

University of Washington

Binary Representations

m Base 2 number representation
= A base 2 digit (0O or 1) is called a bit.
" Represent 351,,as 0000000101011111, or 101011111,

m Electronic implementation
= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

«— 0 > < 1 > — () —
3.3V —
2.8V — T TN
0.5V — / \\’\f
/W

0.0V —

Autumn 2015 Memory & data 10

University of Washington

Describing Byte Values

m Binary 00000000, -- 11111111,
= Byte = 8 bits (binary digits) \
. <& QA
m Decimal 0,, - 255, Q& o
m Hexadecimal 00, -- FF 0000

= Byte = 2 hexadecimal (or “hex” or base 16) digits

= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F
= Write FA1D37B in the Clanguage
= as OxFA1D37B or Oxfald3'/b

m More on specific data types later...

MO0 (>[N | NDIWINIRIO
o L L L L L
e N L N Y Py e (o] T el (Sl B (SR] e ()
[
o
[
o

Autumn 2015 Memory & data 11

uuuuu

University of Washington

Instructions

this week...

Memory

A

~
How does a
program find its

i ?
\data in memory?

Memory & data

12

University of Washington

Byte-Oriented Memory Organization
S &

&

S

m Conceptually, memory is a single, large array of bytes,
each with an unique address (index)

m The value of each byte in memory can be read and written
m Programs refer to bytes in memory by their addresses

"= Domain of possible addresses = address space

m But not all values (e.g., 351) fit in a single byte...
= Store addresses to “remember” where other data is in memory
" How much memory can we address with 1-byte (8-bit) addresses?

m Many operations actually use multi-byte values

Autumn 2015 Memory & data 13

Machine Words

m Word size = address size = register size

m Word size bounds the size of the address space and memory
= word size = w bits => 2W¥ addresses
= Until recently, most machines used 32-bit (4-byte) words

= Potential address space: 232 addresses
232 bytes ~ 4 x 10° bytes = 4 billion bytes = 4GB

= Became too small for memory-intensive applications
= Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
254 bytes ~ 1.8 x 10?° bytes = 18 billion billion bytes = 18 EB (exabytes)

Autumn 2015 Memory & data 14

University of Washington

Word-Oriented Memory Organization (ot dema

addresses)
64-bit 32-bit
= Addresses specify Words Words DYtes Addr
locations of bytes in memory 0000
= Address of word Acidr 0001
= address of first byte in word rdr ?? 0002
= Addresses of successive words = 0003
differ by word size (in bytes): v Addr 0004
e.g., 4 (32-bit) or 8 (64-bit) ; 8882
= Address of wordO, 1, .. 10? h 0007
0008
Addr 0009
Addr 2 0010
= 0011
i 0012
Addr 0013
2 0014
. . 0015

University of Washington

Word-Oriented Memory Organization (ot dema

addresses)
64-bit 32-bit

m Addresses still specify Words Words DYtes Addr
locations of bytes in memory 0000
= Address of word Acidr 0001
= address of first byte in word 0000 0002
- Addr 0003
= Addresses of successive words = 0002

differ by word size (in bytes): 0000 Addr 000
e.g., 4 (32-bit) or 8 (64-bit) ; >
0004 0006
= Address of wordO, 1, .. 10? 0007
= Alignment 0008
Addr 0009
Addr goos 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

University of Washington

A Picture of Memory (32-bit view)

m A “32-bit (4-byte) word-aligned” view of memory:
" |n this type of picture, each row is composed of 4 bytes

= Each cell is a byte

. _— te h
= A 32-bit pointer will fit 0x00 0x01 0x02 0x03 Lzzzﬁ)
on one row V¥ ¥ ¥ 0x00

P 0x04

f& f; | O0x08
,é/

0x0C
////// 0x10
pd Ox14

Ox04 0x05 O0x06 Ox07 Ox18

Ox1C
0x20
Ox24

Autumn 2015 Memory & data 17

University of Washington

A Picture of Memory (64-bit view)

m A “64-bit (8-byte) word-aligned” view of memory:
" |n this type of picture, each row is composed of 8 bytes
= Each cell is a byte

= A 64-bit pointer will fit

on one row (note hex
0x00 0x01 O0x02 O0x03 0x04 0x05 Ox’06 Ox’O7 addresses)

L y 4 y 4 4L L 4

(4 4 4 V| ¥ ¥ ¥ 4 0x00

Ox
Ox
Ox
Ox
Ox
0x08 0x09 OxOA O0xOB OX)C OxOD OxOE CxOF 0x
Ox
Ox
Ox

Autumn 2015 Memory & data 18

University of Washington

A Picture of Memory (64-bit view)

m A “64-bit (8-byte) word-aligned” view of memory:
" |n this type of picture, each row is composed of 8 bytes
= Each cell is a byte

= A 64-bit pointer will fit

on one row (note hex
Ox’OO Ox'Ol Ox'02 Ox’03 Ox’04 Ox’05 Ox’06 Ox’O7 addresses)

(4 4 4 V| ¥ ¥ ¥ 4 0x00

Ox08
O0x10
Ox18
0x20
Ox28
0x08 0x09 OxOA OxOB OXPC OxOD OXOE CxOF O0x30
Ox38
0x40
Ox48

Autumn 2015 Memory & data 19

University of Washington

. 32-bit I
Addresses and Pointers (pomters'aree ffﬁ:spwﬁe)

m An address is a location in memory
m A pointer is a data object that holds an address

m The value 351 is stored at address 0x04
= 351,,=15F,. = 0x00 00 01 5F

0x00
00,00 01 5F| Ox04
0Ox08
0Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

Autumn 2015 Memory & data 20

University of Washington

. 32-bit I
Addresses and Pointers (pomters'aree ffﬁ:spwﬁe)

m An address is a location in memory
m A pointer is a data object that holds an address

m The value 351 is stored at address 0x04
= 351,,=15F,. = 0x00 00 01 5F 0x00

m A pointer stored at address 0x1C ~» 00 00 01 SF| 0x04

points to address 0x04 0x08
0x0C
0x10
Ox14
Ox18
00:00 00 04| 0x1C
0x20
O0x24

Autumn 2015 Memory & data 21

University of Washington

. 32-bit I
Addresses and Pointers (pomters'aree ff::spwﬁe)

m An address is a location in memory
m A pointer is a data object that holds an address

m The value 351 is stored at address 0x04
= 351,,=15F,. = 0x00 00 01 5F 0x00

m A pointer stored at address 0x1C ~» 00 00 01 SF| 0x04

points to address 0x04 0x08

m A pointer to a pointer Ox0C
. O0x10

is stored at address 0x24 Ox14
Ox18

5] 00 00 00 04| Ox1C

| 0x20
—100 00 00 1C| ox24

Autumn 2015 Memory & data 22

University of Washington

. 32-bit I
Addresses and Pointers (pomters'aree ff::spwﬁe)

m An address is a location in memory
m A pointer is a data object that holds an address.

m The value 351 is stored at address 0x04
= 351,,=15F,. = 0x00 00 01 5F 0x00

m A pointer stored at address 0x1C ~» 00 00 01 SF| 0x04

points to address 0x04 0x08
m A pointer to a pointer Ox0C
. O0x10
is stored at address 0x24 00 00 00 ocCl ox14
m The value 12 is stored 0x18
at address 0x14 ; 00 00 00 04} Ox1C

| 0x20
—100 00 00 1C| ox24

" |sit a pointer?

Autumn 2015 Memory & data 23

University of Washington

. 64-bit |
Addresses and Pointers (pomters'aree ﬁfﬂspwﬁe)

m A 64-bit (8-byte) word-aligned view of memory

m The value 351 is stored at address 0x08
= 351,,=15F,; = 0x00 00 01 5F

(note hex

m A pointer stored at addresses)
address 0x38 0x00
points to address Ox08 ~®00 00 00. 00 00: 00 01: 5F | Ox08

m A pointer to a pointer 8&2
is stored 0x20
at address 0x48 Ox28

| 0x30
~»1 00 00; 00 00 00_00 _00 08 |0x38
0x40

~—00 00 00 00 00 00 00 38 0x48

Autumn 2015 Memory & data 24

University of Washington

Data Representations

Sizes of data types (in bytes)

Java Data Type C Data Type Typical 32-bit x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long long 8 8
long double 8 16
(reference) pointer * 4 8

To use “bool” in C, you must #include <stdbool.h> address size = word size

Autumn 2015 Memory & data 25

University of Washington

More on Memory Alighment in x86-64

m For good memory system performance, Intel recommends data
be aligned

= However the x86-64 hardware will work correctly regardless of alignment
of data.

m Aligned means: Any primitive object of K bytes must have an
address that is a multiple of K.

m This means we could expect these types to have starting
addresses that are the following multiples:

K Tpe

1 char

2 short

4 int, float

8 long, double, pointers

More about alignment later in the course

University of Washington

Byte Ordering

m How should bytes within a word be ordered in memory?

Example:
m Store the 4-byte (32-bit) word: Oxal b2 c3 d4

" |n what order will the bytes be stored?

m Conventions!
= Big-endian, Little-endian

= Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little)

Autumn 2015 Memory & data 27

University of Washington

Byte Ordering

m Big-Endian (PowerPC, SPARC, The Internet)
= |Least significant byte has highest address

m Little-Endian (x86)
= |Least significant byte has lowest address
m Example

= Variable has 4-byte representation Oxalb2c3d4
= Address of variable is 0x100

0x100 Ox101 Ox102 Ox103

Big Endian al [b2 | c3 | d4

0x100 Ox101 Ox102 O0x103

Little Endian dd | c3 | b2 | al

Autumn 2015 Memory & data 28

University of Washington

Decimal: 12345
Binary: 0011 0000 0011 1001
3 0 3 9

Byte Ordering Examples

IA32, x86-64 SPARC
(little endian) (pig endian)
0x00
0x01

0x02
0x03

int x = 12345;

32-bit 64-bit

long int y = 12345; |A32 x86-64 SPARC SPARC
ox00| 39 f—| 39 [0x00 ox00 00 00 |ox00
0x01] 30 | 30 |0x01 ox01l 00 00 |Ox01
ox02| 0o f—| 00 [0x02 ox02] 30 00 |ox02
ox03| 00 f—| 00 [0x03 ox03] 39 00 |oxo03
(A long intis the size 00 _f0x04 00 _f0x04
00 |Ox05 00 |0x05
ofa word) 00 |[ox06 30 | Ox06
00 |[ox07 39 |o0x07

Autumn 2015 Memory & data 29

University of Washington

Reading Byte-Reversed Listings

m Disassembly

= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

m Example instruction in memory

= add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81 c3ab 120000 add $0x12ab,%ebx

Autumn 2015 Memory & data 30

University of Washington

Reading Byte-Reversed Listings

m Disassembly

= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

m Example instruction in memory

= add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81c3ab 120000 add $0x12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 000012 ab

m Reverse (little-endian): ab 12 00 00

Autumn 2015 Memory & data 31

University of Washington

] . & = ‘address of’
Addresses and Pointers iIn C «_ /¢ ot address’

or ‘dereference’

int¥* tr; : : :
P Declares a variable, ptr, thatis a pointer to
(i.e., holds the address of) an int in memory

int x = 57 Declares two variables, x and y, that hold
int y = 2; ints, and sets them to 5 and 2, respectively

4
&X ;

ptr Sets ptr to the address of x.]

Now, “ptr points to x”

“Dereference ptr”

l/_‘ Whatis * (&y)

y = 1 + *ptr;

N

Sets y to “1 plus the value stored at the address held by ptr,
because ptr points to x, this is equivalent to y=1+x;

Autumn 2015 Memory & data 32

3
i~ 4

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m A variable is represented by a memory location NN
*is also used with
variable declarations

m Initially, it may hold any value

mintxvy;

= xis at location 0x04, y is at 0x18 0x00_ 0x01 Ox02 0x03

A7.00 32 00| Ox00

00 01 29 F3| Ox04 x
EE EE EE EE [Ox08
FA CE CA FE| OxOC
26 00 00 00| Ox10
00 00 (10 00| Ox14
01 00 00 00| Ox18 vy
FF 00 F4 96| 0Ox1C
00 00 00 00| 0x20
00 42 17 34| 0x24

Autumn 2015 Memory & data 33

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m A variable is represented by a memory location
m Initially, it may hold any value

mintxvy;

i : : 0x00 O0x01 0x02 Ox03
= xis atlocation Ox04, y is at Ox18 X x01 Ox02 Ox

0x00
00 01 29 F3 | Ox04 x
0Ox08
0Ox0C
0x10
Ox14
01 00 00 00| Ox18 vy
Ox1C
0x20
Ox24

Autumn 2015 Memory & data 34

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)
= Store RHS value at LHS location 0x00 O0x01 O0x02 O0x03

mintxy; 0x00
00 00 00 00| Ox04 «x

m x=0; 0x08
0Ox0C
0x10
Ox14
01 00 00 00| Ox18 vy
Ox1C
0x20
Ox24

Autumn 2015 Memory & data 35

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)
= Store RHS value at LHS location 0x00 O0x01 O0x02 O0x03

mintxy; 0x00
00 00 00 00| Ox04 «x

m x=0; 0x08
m y=0x3CD02700; 0x0C
0x10
Ox14
00 27 DO . 3C| Ox18 vy
Ox1C
0x20
Ox24

little endian!

Autumn 2015 Memory & data 36

. niversity of Washington
] & = ‘address of’
32-bit example /

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 0x01 O0x02 0x03

mintx,y; 0x00
03 .27 DO 3C| Ox04 «x

m x=0; 0x08

m y=0x3CD02700; 0x0C

0x10

H X= y + 3; OX14
= Getvalueaty, add 3, putitinx 00 27 .DO 3C| 0x18 vy

Ox1C

0x20

Ox24

Autumn 2015 Memory & data 37

] & = ‘address of’
32-bit example /

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 O0x01 0x02 O0x03

m intx,vy; 0x00
03 27 DO 3C|] Ox04 «x

= x=0; 0x08

m y=0x3CD02700; 0x0C

O0x10

" XEY+3; Ox14
= Getvalueaty, add 3, putitinx 00 27 .DO 3C| 0x18 vy

m int*z Ox1C
O0x20 =z

Ox24

Autumn 2015 Memory & data 38

] & = ‘address of’
32-bit example /

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 O0x01 0x02 O0x03

mintxy; 0x00
03 27 DO 3C|] Ox04 «x

= x=0; 0x08

m y=0x3CD02700; 0x0C

O0x10

B X= y + 3; OX14
= Getvalueaty, add 3, putitinx 00 27 .DO 3C| 0x18 vy

m int*z=&y+3; 0x1C
L O0x20 z

" Getaddress of y, add ???, putitin z 0x24

Autumn 2015 Memory & data 39

] & = ‘address of’
32-bit example /

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 0x01 0x02 O0x03
mintxy; 0x00
03 .27 DO 3C| Ox04 «x
= x=0; 0x08
IR 'ElebiPY Pointer arithmetic 0x0C
m X=y+3; can be dangerous 8&2
= Getvalueaty, , putitinx 00 27 .DO 3C| 0x18 vy
m int*z=&y+3; 0x1C
= Getaddress ofy,add 12, putitinz 24 00 .00 00 8))32 ‘

0x18 = 24 (decimal)

+12 : : ..)
36 = 0x24 [Pomter arithmetic is scaled by size of target type]

Autumn 2015 Memory & data 40

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 O0x01 0x02 O0x03
m intx,vy; 0x00
03 27 DO 3C|] Ox04 «x
= x=0; 0x08
m y=0x3CD02700; 0x0C
O0x10
" XEY+3; Ox14
= Getvalueaty, add 3, putitinx 00 27 .DO 3C| 0x18 vy
m int*z= &y +3; Ox1C
" Getaddress ofy,add 12, putitinz 24 00 .00 00 8))32 ‘
m Fz=y;

= \What does this do?

Autumn 2015 Memory & data 41

University of Washington

32-bit example & = ‘address of

Assignment in C| .. e ores2biswize) | = value at address’
or ‘dereference’

m Left-hand-side = right-hand-side;
® LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location 0x00 O0x01 O0x02 O0x03
mintxvy; 0x00
03 .27 DO 3C| Ox04 «x
"X The target of a pointer is xS
m y=0x3C 5 pointer | 0x0C
also a memory location 0x10
B X=y+3; 0x14
= Getvalu d 3, putitinx 00.27 DO 3C| Ox18 vy
m int*zs Ox1C
. 24 00 (00 00| Ox20 =z
address of y, add 12, putitinz 00 27 DO 3C| ox24
m *z=vy;

= Getvalue of y, put it at the address stored in z

Autumn 2015 Memory & data 42

University of Washington

Arrays are adjacent locations in memory

Arrays in C storing the same type of data object
Declaration: int a[6]; a is a name for the array’s address
64-bit example
[element type 1 (pointers are 64-bits wide)
number of a[1]
name elements al3
a[5
Ox0O Ox1 Ox2 O0x4 Ox5 O0x6 Ox7
0x8 0x9 OxA OxC OxD OxE OxF
0x00 A\
0x08 AN\
a[0] Ox10 A\
a[2] 0x18 A
a[4] 0x20 \F
Ox28
0x30
Ox38
0x40
Ox48

Autumn 2015 Memory & data 43

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = Ox015f;

The address of a[i] is the address of a[0]
a[5] = a[0];

plus i times the element size in bytes

OxO Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 Ox7
Ox8 0x9 OxA OxB OxC OxD OxE OxF

0x00
0x08
a[0] Ox10 |5F 01 : 00 00
a[2] 0x18
a[4] 0x20 5F; 01 00. 00
0Ox28
0x30
Ox38
0x40
Ox48

Autumn 2015 Memory & data 44

University of Washington

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C
Declaration: int a[6];
Indexing: a[0] = Ox015f;
a[5] = a[0];
No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
0x00
0x08
a[0] 0x10
a[2] 0x18
a[4] 0x20
Ox28
0x30
0x38
0x40

Autumn 2015

0x48

a is a name for the array’s address

The address of a[i] is the address of a[0]
plus i times the element size in bytes

OxO Ox1 Ox2 O0x3 O0x4 O0Ox5 Ox6 Ox7
Ox8 O0x9 OxA OxB OxC OxD OxE OxF
AD 0B 00 ;00
S5F 01 00: 00
S5F 01 00 00
AD 0B 00 00

Memory & data

45

University of Washington

Arrays are adjacent locations in memory

Arrays in C storing the same type of data object
Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];
No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

check: a[-1] = OxBAD;
Ox0O Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
o= a; 0x00
o = &a[0]; 0x08 AD 0B 100 00
’a[0] 0x1@*|5F 01 . 00 00
a[2] Ox1
a[4] Ox2 5F 01 00 00
Ox23 |AD 0B_00 00
0x3
0x3
p 0x40110:00. 00. 00.00 00 00 00
0x48

Autumn 2015 Memory & data 46

University of Washington

Arrays are adjacent locations in memory

Arrays in C storing the same type of data object
Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];
No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

check: a[-1] = OxBAD;
Ox0O Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
0= a; 0x00
o = &a[0]; 0x08 AD 0B 100 00
. ’ a[0] Ox1G115F .01 00 00
P=0xA; 3[2]0x1
a[4] Ox2 5F 01 00 00
Ox23 |AD 0B_00 00
0x3
0x3

p 0x40110 00 00: 00 00.00 .00 .00
0x48

Autumn 2015 Memory & data 47

University of Washington

Arrays are adjacent locations in memory

Arrays in C storing the same type of data object
Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];
No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

check: a[-1] = OxBAD;
Ox0O Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
0= a; 0x00
o = &a[0]; 0x08 AD 0B 100 00
. ’a[0] Ox1G710A_ 00 00 00
P=0xA; 3[2]0x1
a[4] Ox2 5F 01 00 00
Ox23 |AD 0B_00 00
0x3
0x3

p 0x40110 00 00: 00 00.00 .00 .00
0x48

Autumn 2015 Memory & data 48

University of Washington

Arrays are adjacent locations in memory

Arrays in C storing the same type of data object
Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];
No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1]=OXBAD; Ox0O Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
o= a; 0x00
o = &a[0]; 0x08 AD 0B 100 00
. ’a[0] Ox1G710A_ 00 00 00
P=0xA; 3[2]0x1
p[1] = 0xB; a[4]0x2 5F_01 00 00
Ox23 |AD 0B_00 00
Ox3
Ox3

p 0x40110 00 00: 00 00.00 .00 .00
0x48

Autumn 2015 Memory & data 49

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1]=OXBAD; Ox0 Ox1 Ox2 O0x3 0Ox4 Ox5 Ox6 0x7
Pointers: int* p; 0x8 0x9 OxA OxB OxC OxD OxE OxF
o= a; 0x00
o = &a[0]; 0x08 AD 0B 00 00
. ’a[0] 0x1G"|0A 00 00 00| 0B 00 00 00
P=0xA; 3[2]0x1
p[1] = 0xB; a[4]Ox2 S5F_01 00 00
Ox28 |AD 0B 00 00
Ox3
Ox3

p 0x40110 00 00: 00 00.00 .00 .00
0x48

Autumn 2015 Memory & data 50

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

check: a[-1] = OxBAD;
OxO Ox1 Ox2 O0x3 O0x4 O0Ox5 Ox6 Ox7
Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
0=a; 0x00
_&’a[O], 0x08 AD 0B 00 00
P= ’ a[0] 0x1G"{OA_00__00_00[0B_ 00 00 _ 00
P=0xA; 3[2]0x1
o[1] = 0xB; |a[4]0x2 5F 0100 00
Ox28 |AD. OB. 00 00
O0x3
O0x3
array indexing = address arithmetic p 0x40410. 00 00. 00 00:00 00 .00
Both are scaled by the size of the type 0x48

Autumn 2015 Memory & data 51

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1] _OXBAD' Ox0O Ox1 O0x2 Ox3 Ox4 Ox5 Ox6 0x7

Pointers: int* p; 0x8 0x9 OxA OxB OxC OxD OxE OxF
0=a: 0x00

o = &a[0]; 0x08 AD 0B (00 00

. ’ a[0] 0x1G*10A 00 00 00J0B 00 00: 00
P=0xA; 3[2]0x1

o[1] = 0xB; |a[4]0x2 S5F. 01 00 00

*(p + 1) = OXB; 8@ AD 0B 00 00

O0x3

array indexing = address arithmetic p 0x40410. 00 00. 00 00:00 00 .00
Both are scaled by the size of the type 0x48

Autumn 2015 Memory & data 52

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: .a[-]'] =OXBAD; Ox0O Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 0x7

Pointers: int* P; 0x8 O0x9 OxA O0xB OxC OxD OxE OxF
0=a: 0x00

- 8a[0]; 0x08 AD 0B 00 00

P= ’ a[0] 0x1Q*{OA 00 00 00J OB 00 00 00

p=0xA; a[2]0x1
p[1] = 0xB; |a[4]0x2 S5F_01 00 00
*(p + 1) = OXB; 8@ AD 0B 00 00

array indexing = address arithmetic p 0x40410. 00 00. 00 00:00 00 .00

Both are scaled by the size of the type 0x48

Autumn 2015 Memory & data 53

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1] _OXBAD' Ox0O Ox1 O0x2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* p; 0x8 0x9 OxA OxB OxC OxD OxE OxF
0=a: 0x00
o = &a[0]; 0x08 AD 0B (00 00
. ’ a[0] 0x10 JOA 00 . 00 00J0B 00 00:00
P=0xA; 3[2]0x1
o[1] = 0xB; |a[4]0x2 S5F. 01 00 00
*(p + 1) = OXB; 8@ AD 0B 00 00
p=p+2; 0x3
array indexing = address arithmetic p 0x407118. 00 00. 00 00:00 00 .00
Both are scaled by the size of the type 0x48

Autumn 2015 Memory & data 54

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1] _OXBAD' Ox0O Ox1 O0x2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* p; 0x8 0x9 OxA OxB OxC OxD OxE OxF
0=a: 0x00
o = &a[0]; 0x08 AD 0B (00 00
. ’ a[0] 0x10 JOA 00 . 00 00J0B 00 00:00
P=0xA; 3[2]0x1
o[1] = 0xB; |a[4]0x2 S5F. 01 00 00
*(p + 1) = OXB; 8@ AD 0B 00 00
p=p+2; 0x3
array indexing = address arithmetic p 0x407118. 00 00. 00 00:00 00 .00
Both are scaled by the size of the type 0x48

*p=a[l] +1;

Autumn 2015 Memory & data 55

University of Washington

. Arrays are adjacent locations in memory
Arrays in C storing the same type of data object

Declaration: int a[6]; a is a name for the array’s address

Indexing: a[0] = 0x015f;
a[5] = a[0];

No bounds a[6] = 0xBAD;

The address of a[i] is the address of a[0]
plus i times the element size in bytes

ChECk: a[-1] =OXBAD; Ox0O Ox1 O0x2 Ox3 Ox4 Ox5 Ox6 0x7
Pointers: int* p; 0x8 0x9 OxA OxB OxC OxD OxE OxF
0=a: 0x00
o = &a[0]; 0x08 AD 0B (00 00
. ’ a[0] 0x10 JOA 00 . 00 00J0B 00 00:00
P=0xA; 3[2]0x18{0C 00 00 00
o[1] = 0xB; |a[4]0x2 S5F. 01 00 00
*(p + 1) = OXB; 8@ AD 0B 00 00
p=p+2; 0x3
array indexing = address arithmetic p 0x407118. 00 00. 00 00:00 00 .00
Both are scaled by the size of the type 0x48

*p=a[l] +1;

Autumn 2015 Memory & data 56

Representing strings

m A C-style string is represented by an array of bytes (char)

— Elements are one-byte ASCII codes for each character
— ASCIl = American Standard Code for Information Interchange

32 space | | 48 O] |64 @] |80 P 96) 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 7 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 C 115 S
36 S 52 4| |68 DJ| |84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \'% 102 f 118 \%
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 I 89 Y 105 I 121 y
42 * 58 : 74 J 90 L 106 j 122 y4
43 ¥ 5 |1 175 k||91 (| |107 k|]123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 : 61 =77 Mm| |93 111|109 m]||125 1
46 . 62 > 78 N 94 " 110 n 126 ~
47 / 63 ? 79 0) 95 _ 111 o] 127 del

Autumn 2015 Memory & data 57

University of Washington

Null-terminated Strings

m For example, “Harry Potter” can be stored as a 13-byte array

72 | 97 | 114 114|121 | 32 | 80 | 111 | 116 | 116 | 101]| 114| O
H a r r y P o] t t e r \0

m Why do we put a 0, or null zero, at the end of the string?
= Note the special symbol: string[12] = '\0';

m How do we compute the string length?

Autumn 2015 Memory & data 58

University of Washington

Endianness and Strings

C (char = 1 byte)
IA32, x86-64 SPARC

char s[6] = "12345";)) _)
(little endian) (big endian)
0x00L 31 | 1 31 |oxo0 ‘v
11 32 | | 32 |oxo1 ‘2
0x02| 33 |« | 33 |ox02 ‘3
0x03| 34 | 1 34 |ox03 ‘4
0x04] 35 | 1 35 |ox04 5
Note: 0x31 = 49 decimal = ASCII ‘1’ 0x05| 00 | » 00 |ox05 \0’

m Byte ordering (endianness) is not an issue for 1-byte values
" The whole array does not constitute a single value
" |ndividual elements are values; chars are single bytes

m Unicode characters — up to 4 bytes/character
= ASCII codes still work (just add leading zeros)
® Unicode can support the many characters in all languages in the world
= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Autumn 2015 Memory & data 59

University of Washington

Examining Data Representations

m Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char
® Chas unchecked casts. << DANGER >>

void show bytes(char* start, int len) ({
int 1i;
for (1 = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;

}
printf directives:
void show_int (int x) { %p Print pointer
show bytes((char *) &x, sizeof(int)); \t Tab
’ %x Print value as hex

\n New line

Autumn 2015 Memory & data 60

University of Washington

show bytes Execution Example

int a = 12345; // represented as 0x00003039
printf ("int a = 12345;\n");

show lnt(a) - // show bytes((char *) &a, sizeof(int));

Result (Linux x86-64):

int a = 12345;

Ox7£f£fb7£f71dbc 0x39
Ox7f£fb7£71dbd 0x30
Ox7f£fb7£f71dbe 0x00
Ox7f£fb7£71dbf 0x00

Autumn 2015 Memory & data 61

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
" OR:A|B=1wheneitherAislorBisl
= XOR: AMB =1 when either Ais1 orBis 1, but not both
= NOT:~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~“(A | B)=~A & ~B
~(A&B)="~A|~B

&10 1 ol I
00 O 0|1
1({0 1 10

Autumn 2015 Memory & data 62

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenbothAislandBis1
" OR:A|B=1wheneitherAislorBisl
= XOR: AMB =1 when either Ais1 orBis 1, but not both
= NOT:~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~“(A | B)=~A & ~B
~(A&B)="~A|~B

&lo 1 |0 1 01 ~|
oloo oflo1 oflo1 of1
1{o01 111 1/10 1]0

Autumn 2015 Memory & data 63

University of Washington

General Boolean Algebras

m Operate on bit vectors
= (QOperations applied bitwise

01101001 01101001 01101001
& 01010101 01010101 A 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the properties of Boolean algebra apply

01010101
A 01010101
00000000

m How does this relate to set operations?

Autumn 2015 Memory & data 64

University of Washington

Representing & Manipulating Sets

m Representation
= A w-bit vector represents subsets of {0, ..., w—1}
" a=1iffj €A

01101001 {0,3,5,6}
6543210
01010101 {0,2,4,6}
6543210
m Operations
= & Intersection 01000001 {0,6}
= Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Autumn 2015 Memory & data 65

University of Washington

Bit-Level Operations in C

m & | AT
= Apply to any “integral” data type
= long, int, short, char, unsigned
= View arguments as bit vectors
m Examples (char data type)
" ~0x41 --> OxBE
~01000001, --> 10111110,
= ~0x00 --> OxFF
~00000000, --> 11111111,
"= 0x69 & 0x55 --> O0x41
01101001, & 01010101, --> 01000001,
"= 0x69 | 0x55 --> O0x7D
01101001, | 01010101, --> 01111101,

m Some bit-twiddling puzzles in Lab 1

Autumn 2015 Memory & data 66

Contrast: Logic Operations in C

m Contrast to logical operators
= && || !
= Qis “False”
= Anything nonzero is “True”

= Always returnOor 1
= Early termination a.k.a. short-circuit evaluation

m Examples (char data type)
= 10x41 --> 0x00

10x00 --> 0x01

110x41 --> 0x01

0x69 && 0x55 --> 0x01
0x69 || 0x55 --> 0x01
= p && *p++ (avoids null pointer access, null pointer = 0x0000 0000 0000 0000)

Autumn 2015 Memory & data 67

