
University of Washington 

Announcements 
 On the website: cs.uw.edu/351 

 Anonymous feedback form 

 Need help? 

 Discussion board (aka GoPost) – You can *search* the GoPost! 

 Send email to cse351-staff at cse.uw.edu 

 Office hours: Almost finalized, check the calendar 

 Lecture slides on the web schedule (these will be linked when ready) 

 Lab 0, make sure to start early – due Monday at 5pm 

 Videos for optional reference – not exactly the same slides as we’ll use 

 Tips for C, debugging, etc. 

 Lecture content 

 Video Assignment for Monday: (found on schedule) 
https://courses.cs.washington.edu/courses/cse351/15au/video-assignment-1.html 

 Everyone in cse351 should be able to sign up for cse390a 
 Show up on Tuesday for first class 
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Hardware: Logical View 
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CPU Memory 

Disks Net USB Etc. 

Bus 
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Hardware: Physical View 
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CPU 

USB… 

I/O 
controller 

Storage connections 

Memory 
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Hardware: 351 View (version 0) 

 CPU executes instructions; memory stores data 

 To execute an instruction, the CPU must: 
 fetch an instruction; 

 fetch the data used by the instruction; and, finally, 

 execute the instruction on the data… 

 which may result in writing data back to memory. 
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CPU 
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data 
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Hardware: 351 View (version 1) 

 The CPU holds instructions temporarily in the instruction cache 

 The CPU holds data temporarily in a fixed number of registers 

 Instruction and operand fetching is HW-controlled 

 Data movement is (assembly language) programmer-controlled 

 We’ll learn about the instructions the CPU executes – 
take cse352 to find out how it actually executes them 
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Hardware: 351 View (version 1) 

 The CPU holds instructions temporarily in the instruction cache. 

 The CPU holds data temporarily in a fixed number of registers. 

 Instruction fetching is HW-controlled. 

 Data movement is programmer-controlled. 

 
6 

Memory 

data 

instructions 

CPU 

take 352… 

registers 

i-cache 

this week… 

How are data 
and instructions 
represented? 

How does a 
program find its 
data in memory? 

Autumn 2015 Memory & data 



University of Washington 

Roadmap 

car *c = malloc(sizeof(car)); 

c->miles = 100; 

c->gals = 17; 

float mpg = get_mpg(c); 

free(c); 

Car c = new Car(); 

c.setMiles(100); 

c.setGals(17); 

float mpg = 

    c.getMPG(); 

get_mpg: 

    pushq   %rbp 

    movq    %rsp, %rbp 

    ... 

    popq    %rbp 

    ret 

Java: C: 

Assembly 
language: 

Machine 
code: 

0111010000011000 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

Computer 
system: 

OS: 

Memory & data 
Integers & floats 
Machine code & C 
x86 assembly 
Procedures & stacks 
Arrays & structs 
Memory & caches 
Processes 
Virtual memory 
Memory allocation 
Java vs. C 
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Memory, Data, and Addressing 

 Representing information as bits and bytes 

 Organizing and addressing data in memory 

 Manipulating data in memory using C 

 Boolean algebra and bit-level manipulations 
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Binary Representations 

 Base 2 number representation 
 A base 2 digit (0 or 1) is called a bit. 

 Represent 35110 as 00000001010111112  or  1010111112 

 

 Electronic implementation 
 Easy to store with bi-stable elements 

 Reliably transmitted on noisy and inaccurate wires  

0.0V 

0.5V 

2.8V 

3.3V 

0 1 0 
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Describing Byte Values 

 Binary  000000002 --  111111112 

 Byte = 8 bits (binary digits) 

 Decimal               010 --  25510 

 Hexadecimal                0016 --  FF16 

 Byte = 2 hexadecimal (or “hex” or base 16) digits 

 Base 16 number representation 

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 

 Write FA1D37B16 in the C language  

 as   0xFA1D37B  or   0xfa1d37b 

 More on specific data types later… 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 
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Byte-Oriented Memory Organization 

 Conceptually, memory is a single, large array of bytes, 
each with an unique address (index) 

 The value of each byte in memory can be read and written 

 Programs refer to bytes in memory by their addresses 
 Domain of possible addresses = address space 

 But not all values (e.g., 351) fit in a single byte… 
 Store addresses to “remember” where other data is in memory 

 How much memory can we address with 1-byte (8-bit) addresses? 

 Many operations actually use multi-byte values 

• • • 
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Machine Words 

 Word size = address size = register size 

 Word size bounds the size of the address space and memory 
 word size = w bits  =>  2w addresses 

 Until recently, most machines used 32-bit (4-byte) words 

 Potential address space: 232 addresses 
232 bytes  4 x 109 bytes = 4 billion bytes = 4GB 

 Became too small for memory-intensive applications 

 Current x86 systems use 64-bit (8-byte) words 

 Potential address space: 264 addresses 
264 bytes  1.8 x 1019 bytes = 18 billion billion bytes = 18 EB (exabytes) 
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Word-Oriented Memory Organization 

 Addresses specify  
locations of bytes in memory 
 Address of word 

 = address of first byte in word 

 Addresses of successive words  
differ by word size (in bytes): 
e.g., 4 (32-bit) or 8 (64-bit) 

 Address of word 0, 1, .. 10? 

 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit 
Words 

Bytes Addr. 

0012 
0013 
0014 
0015 

64-bit 
Words 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 
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Word-Oriented Memory Organization 

 Addresses still specify  
locations of bytes in memory 
 Address of word 

 = address of first byte in word 

 Addresses of successive words  
differ by word size (in bytes): 
e.g., 4 (32-bit) or 8 (64-bit) 

 Address of word 0, 1, .. 10? 

 Alignment 

 

0000 
0001 
0002 
0003 

0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit 
Words 

Bytes Addr. 

0012 
0013 
0014 
0015 

64-bit 
Words 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

0000 

0004 

0008 

0012 

0000 

0008 

16 

0004 
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(note: decimal 
addresses) 
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A Picture of Memory (32-bit view) 

 A “32-bit (4-byte) word-aligned” view of memory: 
 In this type of picture, each row is composed of 4 bytes 

 Each cell is a byte 

 A 32-bit pointer will fit  
on one row 

17 

0x00 0x01 0x02 0x03 

0x04 0x05 0x06 0x07 

… 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

(note hex 
addresses) 
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A Picture of Memory (64-bit view) 

 A “64-bit (8-byte) word-aligned” view of memory: 
 In this type of picture, each row is composed of 8 bytes 

 Each cell is a byte 

 A 64-bit pointer will fit  
on one row 
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0x04 0x05 0x06 0x07 

0x0D 0x0E 0x0F 0x0C 

0x00 
0x 
0x 
0x 
0x 
0x 
0x 
0x 
0x 
0x 

(note hex 
addresses) 
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A Picture of Memory (64-bit view) 

 A “64-bit (8-byte) word-aligned” view of memory: 
 In this type of picture, each row is composed of 8 bytes 

 Each cell is a byte 

 A 64-bit pointer will fit  
on one row 
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0x04 0x05 0x06 0x07 

0x0D 0x0E 0x0F 0x0C 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

(note hex 
addresses) 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

5F 01 00 00 

20 

0x00 

0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

0x04 
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32-bit example 
(pointers are 32-bits wide) 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

5F 01 00 00 
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32-bit example 
(pointers are 32-bits wide) 



University of Washington 

Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

 A pointer to a pointer  
is stored at address 0x24 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

1C 00 00 00 

5F 01 00 00 
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32-bit example 
(pointers are 32-bits wide) 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address. 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

 A pointer to a pointer  
is stored at address 0x24 

 The value 12 is stored 
at address 0x14 
 Is it a pointer? 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

1C 00 00 00 

5F 01 00 00 

0C 00 00 00 
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(pointers are 32-bits wide) 
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Addresses and Pointers 

 A 64-bit (8-byte) word-aligned view of memory 

 The value 351 is stored at address 0x08 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at  
address 0x38 
points to address 0x08 

 A pointer to a pointer  
is stored  
at address 0x48 
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0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

(note hex 
addresses) 

5F 01 00 00 00 00 00 00 

08 00 00 00 00 00 00 00 

38 00 00 00 00 00 00 00 

64-bit example 
(pointers are 64-bits wide) 
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Sizes of data types (in bytes) 
Java Data Type C Data Type Typical 32-bit x86-64 

boolean bool 1 1 

byte char 1 1 

char  2 2 

short short int 2 2 

int int 4 4 

float float 4 4 

 long int 4 8 

double double 8 8 

long long long 8 8 

  long double 8 16 

(reference) pointer * 4 8 

 

Data Representations 
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To use “bool” in C, you must #include <stdbool.h> 
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More on Memory Alignment in x86-64 
 For good memory system performance, Intel recommends data 

be aligned  
 However the x86-64 hardware will work correctly regardless of alignment 

of data. 

 Aligned means: Any primitive object of K bytes must have an 
address that is a multiple of K. 

 This means we could expect these types to have starting 
addresses that are the following multiples: 

 

 

26 

More about alignment later in the course 
Autumn 2015 Memory & data 

K Type 

1 char 

2 short 

4 int, float 

8 long, double, pointers 
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Byte Ordering 

 How should bytes within a word be ordered in memory? 

 

Example:  

 Store the 4-byte (32-bit) word: 0xa1 b2 c3 d4 
 In what order will the bytes be stored? 

 

 Conventions! 
 Big-endian, Little-endian 

 Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little) 
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Byte Ordering 

 Big-Endian (PowerPC, SPARC, The Internet) 
 Least significant byte has highest address 

 Little-Endian (x86) 
 Least significant byte has lowest address 

 Example 
 Variable has 4-byte representation 0xa1b2c3d4 

 Address of variable is 0x100 

 

 
0x100 0x101 0x102 0x103 

01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 

Big Endian 

Little Endian 

a1 b2 c3 d4 

d4 c3 b2 a1 
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Byte Ordering Examples 
Decimal:          12345 

Binary:   0011 0000 0011 1001 

Hex:       3      0      3      9 

39 
30 
00 
00 

IA32, x86-64 
(little endian) 

00 
00 
00 
00 

39 
30 
00 
00 

x86-64 

39 
30 
00 
00 

IA32 

29 

30 
39 

00 
00 

SPARC 
(big endian) 

30 
39 

00 
00 

32-bit 
SPARC  

30 
39 

00 
00 

64-bit 
SPARC  

00 
00 
00 
00 

Autumn 2015 Memory & data 

int x = 12345; 

// or x = 0x3039; 

 

long int y = 12345; 

// or y = 0x3039; 

 

 

 

(A long int is the size 
of a word) 
 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 
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Reading Byte-Reversed Listings 

 Disassembly 
 Take binary machine code and generate an assembly code version 

 Does the reverse of the assembler 

 Example instruction in memory  
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory) 

 
 Address Instruction Code Assembly Rendition 

8048366: 81 c3 ab 12 00 00     add    $0x12ab,%ebx 
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Reading Byte-Reversed Listings 

 Disassembly 
 Take binary machine code and generate an assembly code version 

 Does the reverse of the assembler 

 Example instruction in memory  
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory) 

 
 Address Instruction Code Assembly Rendition 

8048366: 81 c3 ab 12 00 00     add    $0x12ab,%ebx 

Deciphering numbers 

 Value:  0x12ab 

 Pad to 32 bits:  0x000012ab 

 Split into bytes:  00 00 12 ab 

 Reverse (little-endian):  ab 12 00 00 
31 Autumn 2015 Memory & data 
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Addresses and Pointers in C 

32 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

int* ptr; 

 

 

int x = 5; 

int y = 2; 

 

ptr = &x; 

 

 

 

 

y = 1 + *ptr; 

Declares a variable, ptr, that is a pointer to 
(i.e., holds the address of) an int in memory 

Declares two variables, x and y, that hold 
ints, and sets them to 5 and 2, respectively 

Sets ptr to the address of x. 
Now, “ptr points to x” 

Sets y to “1 plus the value stored at the address held by ptr,   
because ptr points to x, this is equivalent to y=1+x; 
 

“Dereference ptr” 

What is   *(&y)    ? 
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Assignment in C 

 A variable is represented by a memory location 

 Initially, it may hold any value 

 int x, y; 
 x is at location 0x04, y is at 0x18 

33 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

F3 29 01 00 

00 00 00 01 

x 

y 

00 32 00 A7 

EE EE EE EE 
FE CA CE FA 
00 00 00 26 
00 10 00 00 

96 F4 00 FF 
00 00 00 00 
34 17 42 00 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

Autumn 2015 Memory & data 

0x00 0x01 0x02 0x03 

* is also used with 

variable declarations 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 A variable is represented by a memory location 

 Initially, it may hold any value 

 int x, y; 
 x is at location 0x04, y is at 0x18 

34 

x 

y 

F3 29 01 00 

00 00 00 01 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

35 

00 00 00 00 

00 00 00 01 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

36 

00 00 00 00 

3C D0 27 00 

x 

y 

little endian! 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3; 
 Get value at y, add 3, put it in x 

 
 

37 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 



University of Washington 

Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z 
 

38 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add ???, put it in z 
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3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3; 
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

40 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 

Pointer arithmetic is scaled by size of target type 

Pointer arithmetic 
can be dangerous 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

Autumn 2015 Memory & data 

0x00 0x01 0x02 0x03 

0x18 = 24 (decimal) 

         + 12 

            36 = 0x24 

32-bit example 
(pointers are 32-bits wide) 



University of Washington 

Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

 *z = y; 
 What does this do? 

41 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

Autumn 2015 Memory & data 

0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;   
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

 *z = y; 
 Get value of y, put it at the address stored in z 

 42 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 
3C D0 27 00 

The target of a pointer is 
also a memory location 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

Autumn 2015 Memory & data 

0x00 0x01 0x02 0x03 

32-bit example 
(pointers are 32-bits wide) 
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Arrays in C 

43 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

element type 

name 
number of 
elements 

a[0] 
a[2] 
a[4] 

a[1] 
a[3] 
a[5] 

64-bit example 
(pointers are 64-bits wide) 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

44 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 01 5F 

00 00 01 5F 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

45 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 01 5F 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

46 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 01 5F 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
 

p 00 00 00 10 00 00 00 00 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

47 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 01 5F 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

48 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

49 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

p[1] = 0xB; 
 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Arrays in C 

50 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

p[1] = 0xB; 
 

00 00 00 0B 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

51 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

p[1] = 0xB; 
 

00 00 00 0B 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

52 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

00 00 00 0B 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

53 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 10 00 00 00 00 

00 00 00 0B 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

54 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 18 00 00 00 00 

00 00 00 0B 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

55 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 18 00 00 00 00 

00 00 00 0B 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

*p = a[1] + 1; 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 

56 Autumn 2015 Memory & data 

0x00 
0x08 
0x10 
0x18 
0x20 
0x28 
0x30 
0x38 
0x40 
0x48 

Declaration:  int a[6]; 

a[0] 
a[2] 
a[4] 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  
The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

00 00 00 0A 

00 00 01 5F 

No bounds 
check:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

00 00 0B AD 

00 00 0B AD 

Pointers:  

{ equivalent 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 
 

p 00 00 00 18 00 00 00 00 

00 00 00 0B 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

*p = a[1] + 1; 

00 00 00 0C 

0x4 0x5 0x6 0x7 0x0 0x1 0x2 0x3 
0xC 0xD 0xE 0xF 0x8 0x9 0xA 0xB 
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Representing strings 
 A C-style string is represented by an array of bytes (char) 

— Elements are one-byte ASCII codes for each character 

— ASCII = American Standard Code for Information Interchange 
32 space 48 0 64 @ 80 P 96 ` 112 p 

33 ! 49 1 65 A 81 Q 97 a 113 q 

34 ” 50 2 66 B 82 R 98 b 114 r 

35 # 51 3 67 C 83 S 99 c 115 s 

36 $ 52 4 68 D 84 T 100 d 116 t 

37 % 53 5 69 E 85 U 101 e 117 u 

38 & 54 6 70 F 86 V 102 f 118 v 

39 ’ 55 7 71 G 87 W 103 g 119 w 

40 ( 56 8 72 H 88 X 104 h 120 x 

41 ) 57 9 73 I 89 Y 105 I 121 y 

42 * 58 : 74 J 90 Z 106 j 122 z 

43 + 59 ; 75 K 91 [ 107 k 123 { 

44 , 60 < 76 L 92 \ 108 l 124 | 

45 - 61 = 77 M 93 ] 109 m 125 } 

46 . 62 > 78 N 94 ^ 110 n 126 ~ 

47 / 63 ? 79 O 95 _ 111 o 127 del 

57 Autumn 2015 Memory & data 
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Null-terminated Strings 

72 97 114 114 121 32 80 111 116 116 101 114 0 

H a r r y P o t t e r \0 

58 

 For example, “Harry Potter” can be stored as a 13-byte array 

 

 

 

 Why do we put a 0, or null zero, at the end of the string? 
 Note the special symbol: string[12] = '\0'; 

 

 How do we compute the string length? 

 

Autumn 2015 Memory & data 
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char s[6] = "12345"; 

Endianness and Strings 

 Byte ordering (endianness) is not an issue for 1-byte values 
 The whole array does not constitute a single value 

 Individual elements are values; chars are single bytes 

 Unicode characters – up to 4 bytes/character 
 ASCII codes still work (just add leading zeros) 

 Unicode can support the many characters in all languages in the world 

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char) 

33 
34 

31 
32 

35 
00 

33 
34 

31 
32 

35 
00 

59 

C (char = 1 byte) 

Autumn 2015 Memory & data 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 Note: 0x31 = 49 decimal = ASCII ‘1’ 

‘1’ 

‘2’ 

‘3’ 

‘4’ 

‘5’ 

‘\0’ 

IA32, x86-64 
(little endian) 

SPARC 
(big endian) 
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 Code to print byte representation of data 
 Any data type can be treated as a byte array by casting it to char 

 C has unchecked casts.  << DANGER >> 

Examining Data Representations 

void show_bytes(char* start, int len) { 

  int i; 

  for (i = 0; i < len; i++) 

    printf("%p\t0x%.2x\n", start+i, *(start+i)); 

  printf("\n"); 

} 

printf directives: 
 %p Print pointer 
 \t Tab 
 %x Print value as hex 
 \n New line 

60 

void show_int (int x) { 

  show_bytes( (char *) &x, sizeof(int)); 

} 

Autumn 2015 Memory & data 
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show_bytes Execution Example 

int a = 12345; // represented as 0x00003039 

printf("int a = 12345;\n"); 

show_int(a);  // show_bytes((char *) &a, sizeof(int)); 

Result (Linux x86-64): 

int a = 12345;    

0x7fffb7f71dbc 0x39 

0x7fffb7f71dbd 0x30 

0x7fffb7f71dbe 0x00 

0x7fffb7f71dbf 0x00 

61 Autumn 2015 Memory & data 
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Boolean Algebra 

 Developed by George Boole in 19th Century 

 Algebraic representation of logic 

 Encode “True” as 1 and “False” as 0 

 AND: A&B = 1 when both A is 1 and B is 1 

 OR: A|B = 1 when either A is 1 or B is 1 

 XOR: A^B = 1 when either A is 1 or B is 1, but not both 

 NOT: ~A = 1 when A is 0 and vice-versa 

 DeMorgan’s Law:  ~(A | B) = ~A & ~B 
                 ~(A & B) = ~A | ~B 

 

 

 

 

& 0 1

0 0 0

1 0 1

~

0 1

1 0
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University of Washington 

Boolean Algebra 

 Developed by George Boole in 19th Century 

 Algebraic representation of logic 

 Encode “True” as 1 and “False” as 0 

 AND: A&B = 1 when both A is 1 and B is 1 

 OR: A|B = 1 when either A is 1 or B is 1 

 XOR: A^B = 1 when either A is 1 or B is 1, but not both 

 NOT: ~A = 1 when A is 0 and vice-versa 

 DeMorgan’s Law:  ~(A | B) = ~A & ~B 
                 ~(A & B) = ~A | ~B 

 

 

 

 

 

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0
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General Boolean Algebras 

 Operate on bit vectors 
 Operations applied bitwise 

 

 

 

 All of the properties of Boolean algebra apply 
 

 

 

 

 How does this relate to set operations? 
 

    01101001 
& 01010101 

  01000001 

   01101001 
| 01010101 
  01111101 

   01101001 
^ 01010101 
  00111100 

   
~ 01010101 
  10101010 

   01010101 
^ 01010101 
  00000000 
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Representing & Manipulating Sets 

 Representation 
 A w-bit vector represents subsets of {0, …, w–1} 

 aj = 1 iff j   A 

01101001 { 0, 3, 5, 6 } 

76543210 

 

01010101 { 0, 2, 4, 6 } 

76543210 

 Operations 
 &  Intersection 01000001 { 0, 6 } 

 |   Union 01111101 { 0, 2, 3, 4, 5, 6 } 

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 } 

 ~ Complement 10101010 { 1, 3, 5, 7 } 
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Bit-Level Operations in C 

 &   |   ^   ~ 
 Apply to any “integral” data type 

 long,  int,  short,  char, unsigned 

 View arguments as bit vectors 

 Examples (char data type) 
 ~0x41 -->  0xBE 

~010000012 --> 101111102 

 ~0x00 -->  0xFF 

~000000002 --> 111111112 

 0x69 & 0x55  -->  0x41 

011010012 & 010101012 --> 010000012 

 0x69 | 0x55  -->  0x7D 

011010012 | 010101012 --> 011111012 

 Some bit-twiddling puzzles in Lab 1 
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Contrast: Logic Operations in C 

 Contrast to logical operators 
 &&     ||     ! 

 0 is “False” 

 Anything nonzero is “True” 

 Always return 0 or 1 

 Early termination    a.k.a.   short-circuit evaluation 

 Examples (char data type) 
 !0x41  -->  0x00 

 !0x00  -->  0x01 

 !!0x41 -->  0x01 

 

 0x69 && 0x55  -->  0x01 

 0x69 || 0x55  -->  0x01 

 p && *p++ ( avoids null pointer access, null pointer = 0x0000 0000 0000 0000 ) 
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