
University of Washington

The Hardware/Software Interface
CSE 351 Autumn 2015

Instructor:

Ruth Anderson

Teaching Assistants:

Nicholas Shahan, Eddie Yan, Dylan Johnson, Anthony McIntosh,
Cody Ohlsen, Alfian Rizqi, Shan Yang, Aakash Sethi, Frank Sun

University of Washington

Me (Ruth Anderson)

 Grad Student at UW in Programming Languages,
Compilers, Parallel Computing

 Taught Computer Science at the University of Virginia for
5 years

 Grad Student at UW: PhD in Educational Technology, Pen
Computing

 Current Research: Computing and the Developing World,
Computer Science Education

 Recently Taught: data structures, architecture, compilers,
programming languages, 142 & 143, data programming in
Python, Unix Tools, Designing Technology
for Resource-Constrained Environments

Autumn 2015 Introduction

University of Washington

The CSE 351 Staff!

3 Autumn 2015 Introduction

Eddie: I'm a first year CSE PhD student.

In my former life as an undergrad, I was an

avid StarCraft 1/2 fan and player. Some of

my favorite pastimes include drinking

copious volumes of boba and bench racing.

I enjoy cooking in the same way that I enjoy

breathing. Feel free to engage me in

conversation about how terrible it is to drive
in downtown Seattle.

Frank (Chenfan): I’m a junior (second year in

the major) originated from Shanghai China.

Besides interacting with computers, I enjoy

eating like other people enjoy cooking. I love

drinking coffee and talking about random

stuff. Foosball is also one of my sports.

Welcome to drink coffee or play foos with me
if we can find a table.

University of Washington

The CSE 351 Staff!

4 Autumn 2015 Introduction

Cody: I am a Computer Engineer

undergrad. I am TAing because this was the

best class ever! I am a transfer student from

community college. I love sports, and if you

want me to never stop talking, bring up

baseball! I love answering questions, I am

very excited to meet new people and I hope

everyone here has as much fun as I did in
this class.

My name is Alfian Rizqi and I'm a senior.

This is my 4th quarter TAing this class. I

have interest in sci-fi. I love it when it is

snowing and my favorite sport is skiing. If

you can guess where I'm from based on

my shirt, you're awesome!

University of Washington

The CSE 351 Staff!

5 Autumn 2015 Introduction

Hello! My name is Dylan. I'm a Senior and

this is my fourth time TA'ing CSE 351. In my

free time I enjoy rock climbing, reading

science fiction quadrilogies,

astrophotography, and programming video

game emulators (after 351 you will be able

to also!). Looking forward to a great quarter!

Aakash: Hey everyone! I'm a second-year

CSE student. Aside from coding, I love

cooking, biking, and listening to podcasts. I'm

looking forward to TAing for the first time!

University of Washington

The CSE 351 Staff!

6 Autumn 2015 Introduction

Shan: I am a senior in computer

engineering. I went on a road trip to

Southern California and Utah in the past 2

weeks. I like playing league of legends,

normal not ranked. I have two adorable pet

rats.

Hello! I am a Nick, a 5th year masters

student from California. I used to work as a

theater projectionist so I'm always interested

to talk about movies with you. Find me in the

lab and let me know if you see a film that you

just can't stop thinking about.

University of Washington

The CSE 351 Staff!

7 Autumn 2015 Introduction

Hi! My name is Anthony, I'm a junior from

Edmonds WA studying comp sci and this is

my first time TAing a class! I also study

guitar at UW and in my free time I like

listening to records, going to concerts,

reading, drinking coffee and hanging out

with my two cats. Looking forward to this

quarter!

University of Washington

Who are you?

 About 200 registered, likely to be several more

 CSE majors, EE majors, some want-to-be majors

 Please fill out the survey linked on the course web page so we
can find out more!

 Introductions on GoPost (see next slide)

8 Autumn 2015 Introduction

https://catalyst.uw.edu/webq/survey/rea2000/247502

University of Washington

9

Introductions on GoPost

 Name

 Year (1,2,3,4,5)

 Hometown

 Interesting Fact,
Hobbies, or what I did
over break.

Autumn 2015 Introduction

We will email you when
we have set this up on GoPost

University of Washington

Quick Announcements

 Website: cse.uw.edu/351

 Lab 0, due Monday, 10/5 at 5pm
 Make sure you get our virtual machine set up and are able to do work

 Basic exercises to start getting familiar with C

 Credit/no-credit

 Get this done as quickly as possible

 Section Tomorrow
 Please install the virtual machine BEFORE coming to section

 BRING your computer with you to section

 We will have some in-class activities to help you get started with lab 0

 10 Autumn 2015 Introduction

http://cs.uw.edu/351

University of Washington

The Hardware/Software Interface

 What is hardware? software?

 What is an interface?

 Why do we need a hardware/software interface?

 Why do we need to understand both sides of this interface?

11 Autumn 2015 Introduction

University of Washington

C/Java, assembly, and machine code

Autumn 2015 Introduction 12

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Assembly Language

High Level Language
(e.g. C, Java)

Machine Code

University of Washington

C/Java, assembly, and machine code

Autumn 2015 Introduction 13

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Assembly Language

High Level Language
(e.g. C, Java)

Machine Code

Compiler

Assembler

University of Washington

C/Java, assembly, and machine code

 The three program
fragments are equivalent

 You'd rather write C! - a
more human-friendly
language

 The hardware likes bit
strings! - everything is
voltages
 The machine instructions

are actually much shorter
than the number of bits
we would need to
represent the characters
in the assembly language

 Autumn 2015 Introduction 14

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

University of Washington

HW/SW Interface: The Historical Perspective

 Hardware started out quite primitive
 Hardware designs were expensive -> instructions had to be very simple

– e.g., a single instruction for adding two integers

 Software was also very basic
 Software primitives reflected the hardware pretty closely

15

Hardware

Architecture Specification (Interface)

Autumn 2015 Introduction

University of Washington

HW/SW Interface: Assemblers

 Life was made a lot better by assemblers
 1 assembly instruction = 1 machine instruction, but...

 different syntax: assembly instructions are character strings, not bit
strings, a lot easier to read/write by humans

 can use symbolic names

16

Hardware

Assembler specification

Assembler

Autumn 2015 Introduction

User

program in

assembly

language

University of Washington

HW/SW Interface: Higher-Level Languages

 Higher level of abstraction:
 1 line of a high-level language is compiled into many

(sometimes very many) lines of assembly language

17

Hardware

C language specification

Assembler C

compiler

Autumn 2015 Introduction

User

program

in C

University of Washington

HW/SW Interface: Code / Compile / Run Times

Hardware Assembler C

compiler

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using

 this same process.

18

.exe file .c file

Autumn 2015 Introduction

User

program

in C

University of Washington

Outline for today

 Course themes: big and little

 Roadmap of course topics

 How the course fits into the CSE curriculum

 Logistics

19 Autumn 2015 Introduction

University of Washington

The Big Theme: Abstractions and Interfaces

 Computing is about abstractions
 (but we can’t forget reality)

 What are the abstractions that we use?

 What do YOU need to know about them?
 When do they break down and you have to peek under the hood?

 What bugs can they cause and how do you find them?

 How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?
 Become a better programmer and begin to understand the important

concepts that have evolved in building ever more complex computer
systems

20 Autumn 2015 Introduction

University of Washington

Roadmap

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Introduction Autumn 2015 21

University of Washington

Little Theme 1: Representation

 All digital systems represent everything as 0s and 1s
 The 0 and 1 are really two different voltage ranges in the wires

 “Everything” includes:
 Numbers – integers and floating point

 Characters – the building blocks of strings

 Instructions – the directives to the CPU that make up a program

 Pointers – addresses of data objects stored away in memory

 These encodings are stored throughout a computer system
 In registers, caches, memories, disks, etc.

 They all need addresses
 A way to find them

 Find a new place to put a new item

 Reclaim the place in memory when data no longer needed

22 Autumn 2015 Introduction

University of Washington

Little Theme 2: Translation

 There is a big gap between how we think about programs and
data and the 0s and 1s of computers

 Need languages to describe what we mean

 Languages need to be translated one step at a time
 Words, phrases and grammars

 We know Java as a programming language
 Have to work our way down to the 0s and 1s of computers

 Try not to lose anything in translation!

 We’ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

23 Autumn 2015 Introduction

University of Washington

Little Theme 3: Control Flow

 How do computers orchestrate the many things they are
doing?

 In one program:
 How do we implement if/else, loops, switches?

 What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

 How do we know what to do upon “return”?

 Across programs and operating systems:
 Multiple user programs

 Operating system has to orchestrate them all

 Each gets a share of computing cycles

 They may need to share system resources (memory, I/O, disks)

 Yielding and taking control of the processor

 Voluntary or “by force”?

24 Autumn 2015 Introduction

University of Washington

Course Outcomes

 Foundation: basics of high-level programming (Java)

 Understanding of some of the abstractions that exist
between programs and the hardware they run on, why they
exist, and how they build upon each other

 Knowledge of some of the details of underlying
implementations

 Become more effective programmers
 Understand some of the many factors that influence program

performance

 More efficient at finding and eliminating bugs

 Facility with a couple more of the many languages that we use to
describe programs and data

 Prepare for later classes in CSE

25 Autumn 2015 Introduction

University of Washington

CSE351’s role in the CSE Curriculum

 Pre-requisites
 142 and 143: Intro Programming I and II

 Also recommended: 390A: System and Software Tools

 One of 6 core courses
 311: Foundations of Computing I

 312: Foundations of Computing II

 331: SW Design and Implementation

 332: Data Abstractions

 351: HW/SW Interface

 352: HW Design and Implementation

 351 provides the context for many follow-on courses

26 Autumn 2015 Introduction

University of Washington

CSE351’s place in the CSE Curriculum

27

CSE351

CSE451
Op Systems

CSE401
Compilers

Concurrency

CSE333
Systems Prog

Performance

CSE484
Security

CSE466
Emb Systems

CS 143
Intro Prog II

CSE352
HW Design

Comp. Arch.

CSE461
Networks

Translate
into

Assembly

Distributed
Systems

CSE477/481/490/etc.
Capstone and Project Courses

The HW/SW Interface:
underlying principles linking
hardware and software

Execution
Model

Real-Time
Control

Autumn 2015 Introduction

University of Washington

Course Perspective

 This course will make you a better programmer.
 Purpose is to show how software really works

 By understanding the underlying system, one can be more effective as
a programmer.

 Better debugging

 Better basis for evaluating performance

 How multiple activities work in concert (e.g., OS and user programs)

 Not just a course for hardware enthusiasts!

 What every CSE major needs to know

 Job interviewers love to ask questions from 351!

 Provide a context in which to place the other CSE courses you’ll take

28 Autumn 2015 Introduction

University of Washington

Textbooks

 Computer Systems: A Programmer’s Perspective, 3rd Edition
 Randal E. Bryant and David R. O’Hallaron

 Prentice-Hall, 2015

 http://csapp.cs.cmu.edu

 3rd edition includes complete rewrite of chapter 3

 All code examples in x86-64

 http://csapp.cs.cmu.edu/3e/changes3e.html

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 A good C book – any will do
 The C Programming Language (Kernighan and Ritchie)

 C: A Reference Manual (Harbison and Steele)

29 Autumn 2015 Introduction

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/changes3e.html

University of Washington

Course Components

 Lectures (29)
 Introduce the concepts; supplemented by textbook

 Sections (10)
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

 Written homework assignments (4)
 Mostly problems from text to solidify understanding

 Programming labs/assignments (5, plus “lab 0”)
 Provide in-depth understanding (via practice) of an aspect of system

 Exams (midterm + final)
 Test your understanding of concepts and principles

 Midterm is scheduled for Wednesday, November 4, in class

 Final will be joint with lectures A & B, Wed Dec 16, 12:30-2:20pm in
KNE 120

30 Autumn 2015 Introduction

University of Washington

Resources

 Course web page
 cse.uw.edu/351

 Schedule, policies, labs, homeworks, and everything else

 Course discussion board
 Keep in touch outside of class – help each other

 Staff will monitor and contribute

 Course mailing list – check your @uw.edu
 Low traffic – mostly announcements; you are already subscribed

 Office hours, appointments, drop-ins
 We will spread our office hours throughout the week

 Staff e-mail: cse351-staff@cse.uw.edu
 For things that are not appropriate for the discussion board

 Anonymous feedback
 Any comments about anything related to the course where you would

feel better not attaching your name (we’ll provide a response in class)
31 Autumn 2015 Introduction

http://www.cs.cmu.edu/~213

University of Washington

Policies: Grading

 Exams (45%): 15% midterm, 30% final

 Written assignments (20%): weighted according to effort
 We’ll try to make these about the same

 Lab assignments (35%): weighted according to effort
 These will likely increase in weight as the quarter progresses

 Late days:
 3 late days to use as you wish throughout the quarter – see website

 Collaboration:
 http://www.cse.uw.edu/education/courses/cse351/15au/policies.html

 http://www.cse.uw.edu/students/policies/misconduct

32 Autumn 2015 Introduction

http://www.cse.uw.edu/education/courses/cse351/15au/policies.html
http://www.cse.uw.edu/education/courses/cse351/15au/policies.html
http://www.cs.washington.edu/students/policies/misconduct
http://www.cs.washington.edu/students/policies/misconduct
http://www.cs.washington.edu/students/policies/misconduct
http://www.cs.washington.edu/students/policies/misconduct

University of Washington

Other details

 Consider taking CSE 390A Unix Tools, 1 credit, useful skills

 Office hours will be held this week, check web page for times

 Lab 0, due Monday, 10/5 at 5pm
 On the website

 Install CSE home VM early, make sure it works for you

 Basic exercises to start getting familiar with C

 Get this done as quickly as possible

 Section Tomorrow
 Please install the virtual machine BEFORE coming to section

 BRING your computer with you to section

 We will have some in-class activities to help you get started with lab 0

33 Autumn 2015 Introduction

University of Washington

Welcome to CSE351!

 Let’s have fun

 Let’s learn – together

 Let’s communicate

 Let’s make this a useful class for all of us

 Many thanks to the many instructors who have shared their
lecture notes – I will be borrowing liberally through the qtr –
they deserve all the credit, the errors are all mine
 CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel

 Harvard: Matt Welsh (now at Google-Seattle)

 UW: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal Perkins, Ben Wood,
John Zahorjan, Katelin Bailey

34 Autumn 2015 Introduction

