
CSE 351: The 
Hardware/Software Interface

Section 7

Caches, lab 4



Caches

Caches speed up accesses to memory 

through temporal and spatial locality

Temporal locality in caches: recently-

accessed data is more likely to be contained 

in the cache

Spatial locality in caches: if a[i] is pulled into 

the cache, then a[i + j] for small j is likely 

to be pulled into the cache too
This depends on the size of cache lines, though

2/19/2014 2



Temporal locality example

 Pretend that the following code is executed more-or-

less as written (with result, b, and c in registers):
int example(int* a, int b, int c) {

int result = *a;

result += b;

result += c;

result += *a;

return result;

}

 *a is likely to be in the cache already going into the 

second access, so there is no need for the CPU to 

access memory twice (due to a cache hit)

2/19/2014 3



Temporal locality example

int example(int* a, int b, int c) {

int result = *a;

result += b;

result += c;

// (generate the Mandelbrot fractal

// to some high recursive depth, e.g.)

result += *a;

return result;

}

 If we perform some memory-intensive operation 

prior to the second access to *a, then *a is less likely 

to be cached when the CPU attempts to read it again 

(resulting in a cache miss)
2/19/2014 4



Spatial locality example

int example(int* array, int len) {

int sum = 0;

for (int i = 0; i < len; ++i) {

sum += array[i];

}

return sum;

}

 Accessing memory causes neighboring memory to be 

cached as well

 If cache lines are 64-bits in size, for example, then 

accessing array[0] will pull array[1] into the cache 

too, so len / 2 memory accesses are required in total

2/19/2014 5



Types of caches

There are a variety of different cache types, 

but the most commonly-used are direct-

mapped caches, set-associative caches, and 

fully-associative caches

Which type to use where depends on size, speed, 

hardware cost, and access pattern considerations

2/19/2014 6



Direct-mapped caches

Direct-mapped caches are hash tables where 

the entries are cache lines (data blocks) of 

size B containing cached memory

2/19/2014 7

*Diagram originally 
from Tom Bergan



Direct-mapped caches

 Addresses are broken up 
into [tag, index, offset]
 tag helps prevent against 

hash collisions
 index specifies which 

data block to access
 offset specifies the offset 

at which to read/write 
data

 The valid bit simply 
indicates whether data 
block contains data

2/19/2014 8



Direct-mapped cache example

 Let’s say we have an address of 8 bits in length (say 
0xF6), where the tag is 2 bits, the index is 4 bits, and the 
offset is 2 bits
 0xF6 = 0b11110110 = [tag, index, offset] = [0b11, 0b1101, 

0b10]
 How big are data blocks? At most how many cache entries 

can be represented? How big are cache entries in total?

 To read from this address in a direct-mapped cache, 
look at the valid bit and tag at line index
 If the valid bit is set and tag matches what is stored there, 

return the data at offset (cache hit)
 Otherwise perform a memory access and store retrieved 

data in the cache (cache miss)

2/19/2014 9



Direct-mapped cache example

 To write to this address in a direct-mapped cache, set 
the valid bit, tag, and data at line index
 Subsequent reads that match this tag will now result in a 

cache hit

 What happens if an entry at that index with a different 
tag already exists?
 Overwrite the tag and data with the new values
 …but this can cause poor performance, since now 

attempting to access the data will result in a cache miss

 Also need to update data stored in memory: can either 
write-through (update on all memory writes) or write-
back (update on cache overwrites due to either 
memory reads or writes)

2/19/2014 10



Set-associative caches

Set-associative caches help to mitigate the 
situation where particular cache lines are 
frequently invalidated
 Which part of the address affects whether such 

invalidations happen?

Addresses are taken to have the same [tag, 
index, offset] form when indexing into set-
associative caches

Each index maps to a set of N cache entries in 
an N-way associative cache

2/19/2014 11



Set-associative caches

2/19/2014 12
*Diagram from Tom Bergan



Set-associative caches

When performing a read from a set-

associative cache, check every entry in the set 

under index
 If an entry has a matching tag and its valid bit is 

set, then return the data at the address’ offset

 If no entry has both a matching tag and valid bit, 

then perform a fetch from memory and add a new 

entry for this address/data

 If all cache entries in a set fill up, pick one of 

them to evict using a replacement policy
2/19/2014 13



Set-associative caches

When performing a write to a set-

associative cache, check every entry in the 

set under index

 If there is an existing entry, simply update it

Otherwise add new entry and (optionally) write 

the data to memory as with direct-mapped 

cache

2/19/2014 14



Set-associative caches

Given addresses of the form [tag, index, 

offset] with s bits for the index and b bits 

for the offset:

There can be at most 2s addressable sets

There are exactly 2b addressable bytes in the 

data blocks

2/19/2014 15



Fully-associative caches

 Instead of having multiple sets of cache 

entries, keep just one
 What are the implications of this in terms of 

hardware costs versus access times?

Fully-associative caches are not very common, 

but the translation lookaside buffer (TLB), 

which facilitates virtual address to physical 

address translation, is one such example
 Expect more on the TLB in operating systems or 

(maybe?) hardware design and implementation
2/19/2014 16



Associativity Trade-offs

Greater associativity
 Pro: results in fewer misses, so the CPU spends less 

time/power reading from slow memory

 Con: searching the cache takes longer (fully 
associative => search the entire cache)

Less associativity
 Pro: searching the cache takes less time (direct-

mapped requires reading only one entry)

 Con: results in more misses, because there are 
fewer spots for each address

2/19/2014 17



Associativity Trade-offs

Direct-mapped cache

Best when the miss penalty is minimal

 Fastest hit times, so the best tradeoff for “large” 
caches

Fully-associative cache

 Lowest miss rate, so the best tradeoff when the 
miss penalty is maximal

2/19/2014 18


