
CSE 351: The 
Hardware/Software Interface

Section 6

Midterm review



Non-inclusive topic list

Addressing data in memory

Pointers, byte ordering

Bit-level operators

&, |, ^, ~, +, !, <<, >>

Integer representations

Two's complement

Floating point numbers

Representation, conversion

2/12/2014 2



Non-inclusive topic list

 Program state representation
 How registers, stack, heap, and text segment are used

 Assembly instructions
 mov, lea, add, and so forth. Moving data between registers and 

memory

 Control flow
 cmp, test, conditional jumps, and how they are used to represent 

if/then, for, and do-while

 Calling conventions
 Passing arguments in x86 versus x86-64, recursive function calls

 Arrays
 Representation in memory, accesses using assembly instructions

 Buffer overflows
 What they are, how they can be used maliciously, how to prevent 

against them

2/12/2014 3



Assembly Review

The x86 assembly instructions can be broken 
down into several basic categories

Data movement instructions

Arithmetic instructions

Control flow instructions

2/12/2014 4



Data Movement Instructions

 MOV
 Moves data between registers and memory

 PUSH
 Decrements stack pointer

 Places value on top of stack

 POP
 Increases stack pointer

 Removes value from top of stack

 LEA
 Loads address into register

 Useful for pointer operations

2/12/2014 5



Arithmetic Instructions

Most are pretty self-explanatory

ADD, SUB, IMUL, IDIV, INC, DEC

These operations can set flags:

CF: carry flag

 ZF: zero flag

 SF: sign flag

OF: overflow flag

2/12/2014 6



Control Flow Instructions

 CMP: compare two operands
 It is equivalent to a SUB command, except the result is not stored, 

only the flags are set

 CALL: call a subroutine
 Pushes the next instruction onto the stack

 Jumps to the code location specified by the operand

 RET: return from subroutine
 Pops an instruction address off the stack

 Jumps to that instruction

 LEAVE: eliminates the current stack frame
 Moves %esp to %ebp

 Pops old %ebp off stack into %ebp

2/12/2014 7



Control Flow Instructions

JMP: jump to a particular label 

Can create conditional jumps using CMP

 JNE: jump if not equal

 JE: jump if equal

 JZ: jump if zero

 JG: jump if greater than

 JGE: jump if greater than or equal to

 JL: jump if less than

 JLE: jump if less than or equal to

2/12/2014 8



Calling Conventions

Things to remember:

Arguments passed in registers for x64

 %rdi, %rsi, %rdx, %rcx, etc…

Caller-save vs. Callee-save

 Stack frame structure

 Subtract from %rsp to create space for locals

 Return address, old %rbp pushed onto stack

 (%rbp) is highest address

 (%rsp) is lowest address

2/12/2014 9



C Unions

Allows you to store data types in the same 
memory location

Example:

A variable of type Data will occupy 20 bytes
Always occupies the size of the largest member

2/12/2014 10

union Data {

int i;

float f;

char str[20];

} data;



C Unions

Members of a union are accessed using the 
same “.” operator used for structs
 If we declare a variable of type Data named 

data_union:
 data_union.i

 data_union.f

 data_union.str

Only one of the members is valid at one time
 Before using a member, your code must ensure that 

it is the “active” member

2/12/2014 11



Questions

Question time!

If you don’t have any questions, we can look 

at implementing strlen()in x64 assembly

2/12/2014 12


