
CSE 351: The
Hardware/Software Interface

Section 4

Procedure calls

Procedure calls

In x86 assembly, values are passed to

function calls on the stack
Perks: Concise, easy to remember

Drawbacks: Always requires memory accesses

In x86-64 assembly, values are passed to

function calls in registers
Perks: Less wasted space, faster

Drawbacks: Potentially requires a lot of register

manipulation

2/23/2014 2

x86 calling conventions

Simply push arguments onto the stack in

order, then “call” the function!

Suppose we define the following function:
int sum(int a, int b) {

 return a + b;

}

(See also sum.c from the provided code)

2/23/2014 3

x86 calling conventions

int sum(int a, int b) {

 return a + b;

}

 In assembly, we have something like this:
sum:

 pushl %ebp # Save base pointer

 movl %esp, %ebp # Save stack pointer

 movl 12(%ebp), %eax # Load b

 movl 8(%ebp), %edx # Load a

 addl %edx, %eax # Compute a + b

 popl %ebp # Restore base pointer

 ret # Return

2/23/2014 4

x86 calling conventions

What is happening with %ebp and %esp?
 pushl %ebp

 The base pointer %ebp is the address of the caller, which
is the location to which “ret” returns. The function
pushes it into the stack so that it won’t be overwritten

movl %esp, %ebp

 Functions often shift the stack pointer to allocate
temporary stack space, so this instruction makes a
backup of the original location. In the body of the
function, %ebp is now the original start of the stack

ret

 When sum() returns, execution picks up at the stored
base pointer address. The return value is passed back
through %eax

2/23/2014 5

x86 calling conventions

Now let’s look at the caller’s side of things
int a = 3, b = 2;

int c = sum(a, b);

 In assembly code, we have something like this:
movl $3, 20(%esp) # Store a = 3

movl $2, 24(%esp) # Store b = 3

movl 24(%esp), %eax # Load b

movl %eax, 4(%esp) # Store b for call

movl 20(%esp), %eax # Load a

movl %eax, (%esp) # Store a for call

call sum # Call the sum() function

2/23/2014 6

x86 calling conventions

Note that the given assembly code is terribly

inefficient, but it’s what GCC will emit

without any optimization

The value to which the stack pointer %esp

points is the first parameter (a in this case)

while the second (b) is stored just above at

4(%esp)

2/23/2014 7

x86-64 calling conventions

%rdi, %rsi, %rdx, %rcx, %r8, and %r9 act as

the first through sixth arguments to

functions

The return value from a function is stored in

%rax

All of these registers are caller-saved (more

on this later)

2/23/2014 8

x86-64 calling conventions

The sum example from earlier in x86-64:
sum:

 pushq %rbp # Save base pointer

 movq %rsp, %rbp # Save stack pointer

 movl %edi, -4(%rbp) # Store a

 movl %esi, -8(%rbp) # Store b

 movl -8(%rbp), %eax # Load b

 movl -4(%rbp), %edx # Load a

 addl %edx, %eax # Compute a + b

 popq %rbp # Restore a + b

 ret # Return

Again, this is unoptimized GCC output

2/23/2014 9

x86-64 calling conventions

What changed compared to the x86

example?

 a and b passed through %rdi (actually %edi, since

it’s an int) and %rsi (%esi)

Manipulation of %rbp and %rsp is just like that of

%ebp and %esp in the x86 version

2/23/2014 10

x86-64 calling conventions

From the caller’s side:
movl $3, -12(%rbp) # Store a

movl $2, -8(%rbp) # Store b

movl -8(%rbp), %edx # Load b

movl -12(%rbp), %eax # Load a

movl %edx, %esi # Move b to %esi

movl %eax, %edi # Move a to %edi

call sum # Call the sum() function

Lots of wasteful register and stack manipulation,

but 3 and 2 end up as first and second

parameters to call to sum()

2/23/2014 11

Caller- versus callee-saved

Some registers are caller-saved, whereas

some are callee-saved

Caller-saved: If the contents of the register

need to be preserved, the caller should save

them on the stack prior to invoking a

function

Callee-saved: If the callee of a function wants

to use a register, it must save the value and

restore it to the register before returning
2/23/2014 12

Caller- versus callee-saved

In x86, the callee-saved registers are %edx,

%esi, %edi, and %ebp; all others are caller-

saved

In x86-64, the callee-saved registers are

%rbx, %rbp, and %r12-%r15; all others are

caller-saved

Why use a callee-saved register versus a

caller-saved register and vice versa?
2/23/2014 13

Calling convention examples

Next we’ll take a look at some examples to

go over usage of these conventions

The code is available under today’s section

on the course website

After running “make”, you’ll have a some

binary files, some assembly files (.s), and

some listing files (.lst), the latter of which

contains a mix of assembly and the original C

code that was used to generate it
2/23/2014 14

