
CSE 351: The
Hardware/Software Interface

Section 3

Control flow, assembly, lab 2

Advanced control flow

Let’s look at some less-common control flow

operators and review how to use them

For each control flow operator, we will

examine the assembly code and see how it

relates

The code is available on the course website

1/24/13 2

do-while (see dowhile.c)

do-while loops are useful when the exit

condition is only relevant after executing the

body of the loop once

int value;

do {

 value = computeSomething(value);

} while (value != 10);

1/24/13 3

switch-case (see switchcase.c)

 switch-case blocks are useful when there are a fixed number of values
that a variable can have, each of which should be handled separately

 How does the efficiency of a switch-case compare to if-else if-else?

int computeSomething(int value) {

 switch (value) {

 case 0:

 case 1:

 value = value + 2;

 break;

 case 2:

 value = value + 3;

 break;

 default:

 ++value;

 }

 return value;

}

1/24/13 4

switch-case (see switchcase.c)

 In this example, if value is either 0 or 1, the statement “value = value +
2;” will be executed and then “break;” will exit the block

 In the absence of “break;”, code execution will “fall through”

int computeSomething(int value) {

 switch (value) {

 case 0:

 case 1:

 value = value + 2;

 // break; <- after commenting this out, execution will proceed

 // through the “case 2” logic as well.

 case 2:

 value = value + 3;

 break;

 default:

 ++value;

 }

 return value;

}

1/24/13 5

ternaries (see ternaries.c)

Ternaries are extremely handy for expressing

concise if-else relations

Use: condition ? true-value : false-value;

int getValue(int* ptr) {

 // return 0 if ptr is NULL, otherwise

 // the value it points to.

 return ptr == NULL ? 0 : *ptr;

}

1/24/13 6

goto (see goto.c)

 gotos are useful for error handling and some other
special cases, but should otherwise be avoided if
possible (code becomes far less readable)

int computeSomething(int value) {

start:

 ++value;

 if (value % 5 == 0)

 goto end;

 else

 goto start;

end:

 return value;

}

1/24/13 7

Lab 2

Use GDB, objdump, and other tools to figure

out code words to defuse the bomb

The files involved:
 bomb: An executable bomb file. Takes code phrases

on separate lines as input

 bomb.c: Defines the entry point of the program. Calls

functions whose source code is not available to you

 defuser.txt: Contains pass phrases for each stage,

separated by newlines. Add each pass phrase here as

you discover it

1/24/13 8

GDB with lab 2

 GDB allows you to see the assembly code for
functions, view the contents of registers, and set
breakpoints to look at values at particular locations

 Sample workflow:
$ gdb --args ./bomb defuser.txt

(gdb) start # start the program (enter main method)

(gdb) b [function-or-address] # set a breakpoint

(gdb) c # continue execution of the code

(GDB will hit the breakpoint)

(gdb) info registers # look at register values

(gdb) disassemble # print assembly code

(gdb) stepi # step one instruction

(gdb) nexti # step one instruction, skipping calls

(gdb) c # start executing again

1/24/13 9

objdump and strings with lab 2

 objdump -t lets you see the symbols

contained in the bomb file, e.g. objdump -t
bomb

Which symbols correspond to functions? Which

functions are specific to the bomb code as

opposed to the GNU C library?

 strings –t x bomb will print out the

readable strings contained in the bomb file

Does the output contain anything useful?
1/24/13 10

Lab 2 notes

Each student in the class has a different

bomb; no two have the same answers

Make sure to put the pass phrases you

discover in the defuser.txt file so that you

don’t have to type them in each time

GDB has built-in help for all of its functions
 (gdb) help info

 (gdb) help disassemble

Can also search online for help with GDB
1/24/13 11

Lab 2 notes

The bomb makes use of sscanf, which parses a

string into values

As an example:
int a, b;

sscanf("123, 456", "%d, %d", &a, &b);

The first string is parsed according to the format

string of the second argument

Upon success, the values of a and b will be set

to 123 and 456, respectively

Refer to man 3 sscanf for more information
1/24/13 12

