
CSE 351: The 
Hardware/Software Interface

Section 1

Intro, C programming, C tools



Introduction

 I am a fifth-year Masters student in CSE

 Graduated last quarter with a degree in Computer 

Engineering

 Interests include embedded software and systems 

engineering
 Third time being a TA for CSE 351

My office hours will be on Monday from 12:30-1:20 

in the 002 lab, but you can always schedule an 

appointment with me

 Contact: discussion board or by email (madman2@cs)

1/10/13 2



Course Tools

Use whatever works best for you: the CSE home 

VM, attu, the instructional Linux machines, or 

your own Linux installation (we won’t provide 

support if you go this route, though)

From pretty much any machine, you can use 

PuTTY (Windows) or an SSH client (OS X, Linux, 

iOS, Android, etc.) to access attu

 Via SSH: ssh [username]@attu.cs.washington.edu

1/10/13 3

http://www.cs.washington.edu/lab/software/homeVMs/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html


Course Tools

We’ll be using the GNU C Compiler (gcc) for 

compiling C code in this course, which is 

available on pretty much every platform 

except Windows (unless through Cygwin)

For an editor, use whatever makes you 

comfortable; Emacs, Vim, gedit, and Eclipse 

are good choices

1/10/13 4



Unix Commands

We’re going to assume that you know some basic 
Unix commands; there are many guides online if you 
need additional help such as this one

 cd: change directory
 Example: cd path/to/directory

 pwd: print working directory
 Example: From my home directory on attu, pwd prints out 

/homes/iws/snowden

 ls: list directory contents
 Example: ls .. (list the directory one above this one)

 chmod: change mode (permissions)
 Example: chmod +x file (make file executable)

1/10/13 5

http://www.cs.washington.edu/education/courses/cse390a/12au/lectures/1/390aLecture01_12au.pdf


Compiling C Code

 There are two steps to get from a C source file to an 

executable file: compiling and linking

 To compile a source file with GCC, use the -c option:
gcc -c example.c

 This will produce a corresponding example.o file, which 

contains the machine code for the example.c source file

 To link object files into an executable with GCC, list 

them as arguments: gcc -o example example.o […]

 Here the -o option specifies what to name the output; it 

will be an executable file called “example”

1/10/13 6



Compiling C Code

 It’s also possible to combine the two steps: gcc -o 

example example.c

 This will accomplish both the compilation and the linking 
at once

 Why might it be a good idea to separate these two steps?

 GCC takes a number of flags, which you will see/have 
seen with lab 0
 -g to include debugging symbols
 -Wall to warn about all recognized problems
 -std=gnu99 to use the C99 standard instead of the C89 

standard, which is just a couple years out of date
 Example: gcc -g -Wall -std=gnu99 -o example 

example.c

1/10/13 7



A Basic C Program

The Hello World of C:
#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

1/10/13 8



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The first line is a header inclusion

Headers provide declarations (but not normally 

definitions) of other code

 stdio.h contains the declaration of the printf

function, which is used for printing to the console

1/10/13 9



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

On Linux, you can look under /usr/include to 

see the contents of these header files

To refer to headers that aren’t part of “special” 

directories, put the path to them in quotes

 As an example, #include "path/to/header.h"

1/10/13 10



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The next part of the file is the declaration of the 

entry point for the program: main()

 main() takes two parameters, the first of which is the 

number of strings contained in the second parameter. 

argv is an array of the arguments to the program

1/10/13 11



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

The printf() function prints to the console. 

It is equivalent to Java’s System.out.printf()

and requires that you insert a newline 

explicitly

1/10/13 12



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

Finally, return 0 indicates the status code of the 
program when it exits

A status code of 0 indicates success, whereas 
other numbers have a different meaning
 errno.h includes the names of many status codes, 

which are documented in “man errno”

1/10/13 13



A Basic C Program

#include <stdio.h>

int main(int argc, char* argv[]){

printf("Hello World\n");

return 0;

}

Let’s compile and run the program

1/10/13 14



Formatting Output

 In C, there is no easy way to concatenate strings 

as there is in Java. Instead, printf() supports a 

number of format codes

Example: int val = 10; printf("%d\n", val);

 %d is the format code for ints, so the above code will 

print “10” with a newline

Other format codes: %f for floats and doubles, 

%s for strings, %x for hexadecimal values, %p for 

pointers. See the cplusplus site for more info
1/10/13 15

http://www.cplusplus.com/reference/cstdio/printf/


Formatting Output

A few different scenarios:
printf("There are %d students enrolled "

"in the class\n", 88);

printf("The course number for this "

"class is %s\n", "CSE 351");

printf("If you want a %f in %s, you’ll "

"need to work for it\n", 4.0,

"CSE 351");

1/10/13 16



Man Pages

Much of the functionality of Linux is 

documented in man pages. Man pages are 

manuals describing how a variety of 

commands, functions, and so forth work

As an example, take a look at man ssh. This 

describes how the ssh command works

For C functions, look in section 3; that is, use 

man 3 [topic], so man 3 printf for the 

printf() function
1/10/13 17



Debugging

The best way of debugging C programs is to 

use GDB (not printf statements!)

GDB is the GNU debugger, and it does a 

variety of amazing things. To use it, compile 

your program using the -g option (to include 

debugging symbols) and then run in under 

GDB with gdb ./example

Let’s run the hello world program from 

before under GDB
1/10/13 18



Debugging

 Use the “p” (print) command within GDB to print out 
values of variables and their addresses

 Use the “b” (breakpoint) command to set a breakpoint at 
a particular line/file/function, e.g. “b 79” to break 
execution at line 79 in the current file

 Use the “c” (continue) command to resume execution 
after hitting a breakpoint

 Use the “d” (delete breakpoint) command to remove 
breakpoints, e.g. “d 1” to delete breakpoint 1

 Use the “list” command to output the code with line 
numbers in the current file. “list [line-#]” will list code 
from the given line; press Enter to see more code

1/10/13 19



Debugging

Use the “x” (examine) command within GDB 
to examine memory at a certain address 
(more useful in later labs)

Use the “r” (run) command to execute the 
program

Use the “s” (step) command within GDB to 
execute one C statement

Use the “n” (next) command to execute one 
C statement, skipping over function calls

1/10/13 20



Debugging

Use the “bt” (backtrace) command within GDB 
to print out the current call stack

Use the “frame” command jump to the 
indicated stack frame, e.g. “frame 3” for stack 
frame 3. Use this in combination with the “bt” 
command

When setting breakpoints, you can specify a 
condition so that the debugger only breaks if 
the condition is met, e.g. “b example.c:83 if x == 
10” will set a breakpoint at line 83 of example.c
that will activate only when x is 10

1/10/13 21



Your Turn

Working in pairs/groups, download the two .c 
files for this section from the course website
and use GDB to debug and fix the problems 
using the techniques given in the source files
 Work first on conditional.c, then on backtrace.c

 Alternatively, if you haven’t completed lab 0, now 
would be a good time to do it

Be sure to ask for help if needed!

GDB Cheat Sheet:
 http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

1/10/13 22

http://courses.washington.edu/cse351/14wi/sections/section-0.tar.gz
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

