University of Washington University of Washington

Roadma Data & addressing . .
P Integers & floats Processes — another important abstraction
. Machine code & C
C: Java:
x86 assembly . L.)
car *c = malloc(sizeof(car)); | |Car c = new Car(); Procedures & stacks m First some preliminaries
c->miles = 100; c.setMiles (100) ;
c->gals = 17; c.setGals (17) ; Arrays & structs = Control flow

Memory & caches

float mpg = get_mpg(c) ; float mpg = = Exceptional control flow
free(c) ; c.getMPG() ; Pt.'ocesses . A h i int X
~a —— Virtual memory synchronous exceptions (interrupts)
Assembly get_mpg: Memory allocation m Processes
language: pushq %rbp Javavs. C .
movq %rsp, %rbp u Creatlng new processes
EeEg GeE = Fork and wait
ret ‘} 0S: = Zombies
Machine 0111010000011000 -- g
de: 100011010000010000000010 A
code: 1000100111000010 ol e
110000011111101000011111 Windows 8 Mac S
v v
Computer
system:
Control Flow Control Flow
m So far, we’ve seen how the flow of control changes as a single m Processors do only one thing:
program executes ® From startup to shutdown, a CPU simply reads and executes

m A CPU executes more than one program at a time though — we (interprets) a sequence of instructions, one at a time

also need to understand how control flows across the many
components of the system

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow
m Exceptional control flow is the basic mechanism used for: <startup>
= Transferring control between processes and OS inst1
= Handling I/0 and virtual memory within the OS . inSt2
" |mplementing multi-process applications like shells and web servers time inst3
= |mplementing concurrency
inst,

<shutdown>

Autumn 2013 Processes 3 Autumn 2013 Processes a

University of Washington University of Washington

Altering the Control Flow Exceptional Control Flow
m Up to now: two ways to change control flow: m Exists at all levels of a computer system
= Jumps (conditional and unconditional) = Low level mechanisms

= Call and return = Exceptions

Both react to changes in program state = change processor’s in control flow in response to a system event

m Processor also needs to react to changes in system state (i.e., change in system state, user-generated interrupt)
= user hits “Ctrl-C” at the keyboard = Combination of hardware and OS software
= yser clicks on a different application’s window on the screen m Higher level mechanisms
® data arrives from a disk or a network adapter ® Process context switch
® instruction divides by zero = Signals —you’ll hear about these in CSE451 and CSE466
= system timer expires " |mplemented by either:
m Can jumps and procedure calls achieve this? * OS software
= Jumps and calls are not sufficient — the system needs mechanisms for * Clanguage runtime library

“exceptional” control flow!

Autumn 2013 Processes 5 Autumn 2013 Processes 6

Exceptions Interrupt Vectors
m An exception is transfer of control to the operating system (OS) —_—
. . A xception
In response to some event (|.e., change In processor state) numbers
User Process os code for m Each type of event hasa
exception handler 0 unique exception number k
. Exception
event T exception Table code for k = index into exception table
next_instr exception processing 0 Pe exception handler 1 " (a_k a. interrupt vch,tor)
by exception 1 ' T R0T o P
« return t h‘:".dlet’ 2 Ll exception handler 2
WA iia) Lo} (A [T m Handler k is called each time
e return to next_instr n-1 exception k occurs
*abort
. code for
m Examples: exception handler n-1

div by 0, page fault, I/O request completes, Ctrl-C
m How does the system know where to jump to in the OS?
basically a jump table for exceptions...

Autumn 2013 Processes 7 Autumn 2013 Processes 8

University of Washington

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
= |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= Handler returns to “next” instruction
m Examples:
= |/O interrupts
= hitting Ctrl-C on the keyboard
= clicking a mouse button or tapping a touchscreen
= arrival of a packet from a network
= arrival of data from a disk
® Hard reset interrupt
= hitting the reset button on front panel
= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

Autumn 2013 Processes 9

University of Washington

Trap Example: Opening File

m Usercalls: open (filename, options)
m Function open executes system call instruction int

0804d070 <__ libc_open>:

804d082: cd 80 int $0x80

804d084: 5b pop $ebx
User Process (0}
int l exception
pop open file
returns

m OS must find or create file, get it ready for reading or writing
m Returns integer file descriptor

Autumn 2013 Processes 11

University of Washington

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= Intentional: transfer control to OS to perform some function
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), segment protection faults
(unrecoverable), integer divide-by-zero exceptions (unrecoverable)

= Either re-executes faulting (“current”) instruction or aborts
= Aborts
= Unintentional and unrecoverable
= Examples: parity error, machine check (hardware failure detected)
= Aborts current program

Autumn 2013 Processes 10

University of Washington

Fault Example: Page Fault

int a[1000];

m User writes to memory location l;lain 0
m That portion (page) of user’'s memory a[500] = 13;
is currently on disk }
| 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process oS

l exception: page fault
movl
Create page and
returns load into memory

m Page handler must load page into physical memory

m Returns to faulting instruction: mov is executed again!
m Successful on second try

Autumn 2013 Processes 12

University of Washington University of Washington

Fault Example: Invalid Memory Reference Exception Table IA32 (Excerpt)

int a[1000];
main ()
{ Exception Number Description Exception Class
) a[5000] = 13; 0 Divide error Fault
13 General protection fault Fault
| 80483b7: c7 05 60 e3 04 08 0d movl $0xd, 0x804e360 14 Page fault Fault
U p 0s 18 Machine check Abort
ser Frocess
32-127 0S-defined Interrupt or trap
. 128 (0x80) System call Trap
exception: page fault
movl 129-255 0OS-defined Interrupt or trap

detect invalid address

————— signal process

http://download.intel.com/design/processor/manuals/253665.pdf

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

Autumn 2013 Processes 13 Autumn 2013 Processes 14

University of Washington University of Washington

Summary What is a process?

m Exceptions
= Events that require non-standard control flow m What is a program? A processor? A process?
= Generated externally (interrupts) or internally (traps and faults)
= After an exception is handled, one of three things may happen:
= Re-execute the current instruction
= Resume execution with the next instruction
= Abort the process that caused the exception

Autumn 2013 Processes 15 Autumn 2013 Processes 16

University of Washington

What is a process?

m Why are we learning about processes?

® Processes are another abstraction in our computer system — the

process abstraction provides an interface between the program and the
underlying CPU + memory.

m What do processes have to do with exceptional control flow
(previous lecture)?

= Exceptional control flow is the mechanism that the OS uses to enable
multiple processes to run on the same system.

Autumn 2013 Processes 17

University of Washington

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
instruction executions (flows) overlap in time

m Otherwise, they are sequential

m Examples:
= Concurrent:A&B,A&C
= Sequential: B& C

Process A Process B Process C

I
1

time |

Autumn 2013 Processes 19

University of Washington

Processes

m Definition: A process is an instance of a running program
" One of the most important ideas in computer science
= Not the same as “program” or “processor”

Process provides each program with two key abstractions:
® Logical control flow
= Each process seems to have exclusive use of the CPU
® Private virtual address space
= Each process seems to have exclusive use of main memory

Why are these illusions important?

How are these illusions maintained?
= Process executions interleaved (multi-tasking)
® Address spaces managed by virtual memory system — next course topic

Autumn 2013 Processes 18

University of Washington

User View of Concurrent Processes

m Control flows for concurrent processes are physically disjoint
in time
= CPU only executes instructions for one process at a time

m However, we can think of concurrent processes as executing
in parallel

Process A Process B Process C

time 1

Autumn 2013 Processes 20

University of Washington

Context Switching

m Processes are managed by a shared chunk of OS code

called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part

of a user process

m Control flow passes from one process to another via a context

switch... (how?)
Process A

time

Autumn 2013

Process B

Processes

user code
kernel code } context switch
user code

kernel code } context switch

user code

University of Washington

fork: Creating New Processes

m pid_t fork(void)

= creates a hew process (child process) that is identical to the calling
process (parent process), including all state (memory, registers, etc.)

= returns O to the child process

= returns child’s process ID (pid) to the parent process

pid_t pid = fork();
if (pid == 0) {

} else {

}

printf ("hello from child\n") ;

printf ("hello from parent\n") ;

m fork is unique (and often confusing) because it is called once

but returns twice

Autumn 2013

Processes

University of Washington

Creating New Processes & Programs

m fork-exec model:
= fork () creates a copy of the current process

= execve () replaces the current process’ code & address space with
the code for a different program

m fork () and execve () are system calls

" Note: process creation in Windows is slightly different from Linux’s fork-
exec model

m Other system calls for process management:
" getpid()
" exit()
" wait() /waitpid()

Autumn 2013 Processes 22

University of Washington

Understanding fork

Process n

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

Autumn 2013 Processes 24

Understanding fork

Process n

Child Process m

University of Washington

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf("hello from parent\n");

}

Autumn 2013

Understanding fork

Process n

Processes

Child Process m

University of Washington

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n") ;
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
printf ("hello from child\n");

} else {
’ printf ("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n") ;
} else {

printf("hello from parent\n");
}

hello from parent

Autumn 2013

Which one is first?

Processes

hello from child

Understanding fork

Process n

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

» pid_t pid = fork();

if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");

}

Autumn 2013

Fork Example

Processes

University of Washington

Child Process m

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n") ;
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n") ;
} else {

printf("hello from parent\n");

}

University of Washington

m Parent and child both run the same code
= Distinguish parent from child by return value from fork ()
= Which runs first after the fork () is undefined

m Start with same state, but each has a private copy

= Same variables, same call stack, same file descriptors, same register
contents, same program counter...

void forkl ()
{
int x = 1;
pid_t pid = fork();
if (pid == 0) {
printf("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}
printf ("Bye from process %d with x = %d\n", getpid(), x);
}

Autumn 2013

Processes

University of Washington

Exec-ing a new program

Stack
Very high-level diagram of what
happens when you run the
Heap command ”1s” in a Linux shell:
Data

Code: /usr/bin/bash

fork(): l\
parent child

Stack
Stack
exec():
—p
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/Is

Autumn 2013 Processes 29

University of Washington

execve: Example

envp[n] = NULL

envp[n-1] —> “PWD=/homes/iws/gaetano”
[—> “PRINTER=ps581”

envp[0] —> “USER=gaetano”

argv[argc] = NULL

argv[argc-1] —> “/usr/include”
—> ~-1”

argv([0] —> “1s”

Autumn 2012 Exceptional Control and Processes 31

University of Washington

execve: Loading and Running Programs

) Null-terminated

m int execve(env var strings
char *filename,
char *argv][],

Stack bottom

Null-terminated
cmd line arg strings

char *envp][] unused
) envp[n] == NULL
m Loads and runs in current process: envp[n-1]

= Executable filename

envp[0]
argv[argc] == NULL
argv[argc-1]

= With argument list argv

= And environment variable list envp

= Env. vars: “name=value” strings

(e.g. “PWD=/homes/iws/bpw”) argv[0]
m execve does not return (unless error) Linker vars
] envp
m Overwrites code, data, and stack arey
= Keeps pid, open files, a few other items argc
Stack frame for
A L Stack top 4,

University of Washington

exit: Ending a process

m void exit(int status)
= Exits a process
= Status code: 0 is used for a normal exit, nonzero for abnormal exit
" atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;

}

void fork6() {

atexit (cleanup)q\

fork () ; — function pointer
exit(0);

Autumn 2013 Processes 32

University of Washington

Zombies

m Ildea
= When process terminates, it still consumes system resources
= Various tables maintained by OS
= Called a “zombie”
= Aliving corpse, half alive and half dead
m Reaping
= Performed by parent on terminated child
® Parent is given exit status information
= Kernel discards process
m What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then child will be
reaped by init process (pid == 1)
® Butin long-running processes we need explicit reaping
= e.g., shells and servers

Autumn 2013 Processes

University of Washington

wait Example

void fork wait() {
int child_status;
pid_t child pid;

if (fork() == 0) {
printf ("HC: hello from child\n");
} else {
child pid = wait(&child status);
printf ("CT: child %d has terminated\n”,
child pid);

HC Bye

CT Bye

}
printf ("Bye\n") ;
exit (0) ;

Autumn 2013 Processes

University of Washington

wait: Synchronizing with Children

m int wait(int *child status)

= Suspends current process (i.e. the parent) until one of its children
terminates

= Return value is the pid of the child process that terminated
= On successful return, the child process is reaped

" Ifchild status != NULL, then the int that it points to will be set
to a status indicating why the child process terminated

= NULL is a macro for address 0, the null pointer
= There are special macros for interpreting this status — see wait(2)

m If parent process has multiple children, wait () will return
when any of the children terminates

" waitpid () can be used to wait on a specific child process

Autumn 2013 Processes

University of Washington

Process management summary

m fork gets us two copies of the same process (but fork ()
returns different values to the two processes)
m execve has a new process substitute itself for the one that
called it
= Two-process program:
= First fork ()
= if (pid == 0) { /* child code */ } else { /* parent code */ }
= Two different programs:
= First fork ()
= if (pid == 0) { execve () }else { /* parent code */ }
= Now running two completely different programs
» wait/waitpid used to synchronize parent/child execution
and to reap child process

Autumn 2013 Processes

University of Washington

Summary

m Processes
= At any given time, system has multiple active processes

= Only one can execute at a time, but each process appears to have total
control of the processor

= OS periodically “context switches” between active processes
= Implemented using exceptional control flow
m Process management
= fork: one call, two returns
= exec: one call, usually no return
" wait orwaitpid: synchronization
" exit:one call, noreturn

Autumn 2013 Processes 37

University of Washington

Fork Example #2

m Both parent and child can continue forking

void fork2()

{
printf ("LO\n") ; '_sz
fork () ; L1l Bye
printf ("L1\n") ; Bye
fork () ; I_L

10|11 | B

printf ("Bye\n") ; =

}

Autumn 2013 Processes 39

University of Washington

Detailed examples

Autumn 2013 Processes 38

University of Washington

Fork Example #3

m Both parent and child can continue forking

\(roid fork3 () Bve
L2 B

printf ("LO\n") ; =
fork() ; Bye
printf ("L1\n") ; Ll |12 | Bye
fork () ; Bye
printf ("L2\n") ; 1.2 Bve
fork() ;
printf ("Bye\n") ; Bye

} L0 | L1 | L2 Bye

Autumn 2013 Processes 40

University of Washington

Fork Example #4

m Both parent and child can continue forking

Autumn 2013

University of Washington

void fork4 ()
{

printf ("LO\n") ;

if (fork() '= 0) {
printf ("L1\n") ; ____ Bye
if (fork() '= 0) {
printf ("L2\n") ; Bye

fork () ;

}
}

printf ("Bye\n") ;

Bye
L2 I Bye

L0 | L1

Zombie
Example

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6
Terminating Child, PID
linux> ps

PID
6585
6639
6640
6641

TTY TIME
ttyp9 00:00:00
ttyp9 00:00:03
ttyp9 00:00:00
ttyp9 00:00:00

linux> kill 6639

[1]

Terminated

linux> ps

PID
6585
6642

Autumn 2013

TTY TIME
ttyp9 00:00:00
ttyp9 00:00:00

639
= 6640

CMD
tesh
forks

forks <defunct>

pPs

CMD
tesh

Ps

Processes a1

void fork7()
{
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid()) ;
exit(0) ;
} else {
printf ("Running Parent, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */

m ps shows child process as
“defunct”

m Killing parent allows child to be
reaped by init

Processes a3

University of Washington

Fork Example #5

m Both parent and child can continue forking

void fork5()
{
printf ("LO\n") ;
if (fork() == 0)
printf ("L1\n")
if (fork()

fork () ;
}

}
printf ("Bye\n") ;

== 0) {
printf ("L2\n") ;

{

’

Autumn 2013

Processes a2

University of Washington

Non-terminating
Child Example

void fork8()

if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit(0);

}

linux> ./forks 8

Terminating Parent, PID = 6675

Running Child, PID = 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh

6676 ttyp9 00:00:06 forks]

6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Autumn 2013

m Child process still active even though
parent has terminated

Must kill explicitly, or else will keep
running indefinitely

Processes aa

wait () Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about exit

status

void forklO0()
{
pid_t pid|[N];
int i;
int child_status;
for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED (child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child_status));
else
printf("Child %d terminated abnormally\n", wpid);

}

Autumn 2013 Processes

University of Washington

as

University of Washington

waitpid () : Waiting for a Specific Process

m waitpid(pid, &status, options)
= suspends current process until specific process terminates
® various options (that we won’t talk about)

void forkll ()
{
pid_t pid[N];
int i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else
printf("Child %d terminated abnormally\n", wpid);

Autumn 2013 Processes

a6

