Roadmap

C:

```c
void *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:

```
get_mpg:
    pushq    %rbp
    movq     %rsp, %rbp
    ...
    popq     %rbp
    ret
```

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```

Computer system:

Memory & data

Integers & floats

Machine code & C

x86 assembly

Procedures & stacks

Arrays & structs

Memory & caches

Processes

Virtual memory

Memory allocation

Java vs. C

Integers & Floats
Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

```
low-order 52 bits of 64-bit word
```

- “One-hot” encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 ![low-order 52 bits of 64-bit word]

 - “One-hot” encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1

 ![low-order 52 bits of 64-bit word]

 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits

Can we do better?
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

low-order 6 bits of a byte
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Also fits in one byte, and easy to do comparisons
Compare Card Suits

define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (! (card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
 // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

SUIT_MASK = 0x30 = 00110000

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if (sameSuitP(card1, card2)) { ... }
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

VALUE_MASK = 0x0F = \[0|0|0|0|1|1|1|1\]
\[\text{suit} \quad \text{value}\]

cchar hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
 card1 = hand[0];
 card2 = hand[1];
...
 if (greaterValue(card1, card2)) { ... }
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can not represent all the integers
 - **Unsigned values:** $0 \ldots 2^{W-1}$
 - **Signed values:** $-2^{W-1} \ldots 2^{W-1}-1$

- Reminder: terminology for binary representations

 “Most-significant” or “high-order” bit(s)
 “Least-significant” or “low-order” bit(s)

 \[
 \begin{array}{c}
 0110010110101001 \\
 \end{array}
 \]
Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+\ldots+2^{N-1} = 2^N - 1$

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

- How would you make signed integers?
Signed Integers: Sign-and-Magnitude

- **Let's do the natural thing for the positives**
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): $0x00 = 0$, $0x01 = 1$, ..., $0x7F = 127$

- **But, we need to let about half of them be negative**
 - Use the high-order bit to indicate *negative*: call it the “sign bit”
 - Call this a “sign-and-magnitude” representation
 - Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 01111111_2$ is non-negative
 - $0x85 = 10000101_2$ is negative
 - $0x80 = 10000000_2$ is negative...
Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
 - 10000001_2
 - Use the MSB for + or -, and the other bits to give magnitude.
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - \(10000001_2\)
 Use the MSB for + or -, and the other bits to give magnitude.
 (Unfortunate side effect: there are two representations of 0!)
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001_2
 Use the MSB for + or -, and the other bits to give magnitude. (Unfortunate side effect: there are two representations of 0!)
 - Another problem: arithmetic is cumbersome.
 - Example:
 $4 - 3 \neq 4 + (-3)$

How do we solve these problems?
Two’s Complement Negatives

- How should we represent -1 in binary?
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

- \(b_{w-1} = 1 \) adds \(-2^{w-1}\) to the value.
- for \(i < w-1 \): \(b_i = 1 \) adds \(+2^i \) to the value.

\[
\begin{array}{c}
\text{Spring 2014} \\
\text{Integers & Floats}
\end{array}
\]
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \quad \text{for } i < w-1: \quad b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

e.g. unsigned \(1010_2 \):

\[1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10_{10} \]

2’s compl. \(1010_2 \):

\[-1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -6_{10} \]
Two’s Complement Negatives

- How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but **negative weight**.

- For `bw-1 = 1` adds `-2^{w-1}` to the value.
- For `i < w-1`: `bi = 1` adds `+2^i` to the value.

 - e.g. unsigned `1010_2`:

 \[1\times2^3 + 0\times2^2 + 1\times2^1 + 0\times2^0 = 10_{10} \]

 - 2’s comp. `1010_2`:

 \[-1\times2^3 + 0\times2^2 + 1\times2^1 + 0\times2^0 = -6_{10} \]

- -1 is represented as `1111_2 = -2^3 + (2^3 − 1)`

 All negative integers still have MSB = 1.

- **Advantages**: single zero, simple arithmetic

- To get negative representation of any integer, take bitwise complement and then add one!

 \[\sim x + 1 == -x \]
4-bit Unsigned vs. Two’s Complement

\[2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]

\[-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]
4-bit Unsigned vs. Two’s Complement

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

(math) difference = 16 = 2^4

(integers)

(floats)
4-bit Unsigned vs. Two’s Complement

\[2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 = 11 \]

\[-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 = -5\]

(math) difference = 16 = \(2^4\)
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum $\mod 2^W$

- Examples:

<table>
<thead>
<tr>
<th></th>
<th>0100</th>
<th>0100</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+ 3</td>
<td>− 3</td>
<td>− 4</td>
</tr>
<tr>
<td>+ 0011</td>
<td>+ 1101</td>
<td>+ 0011</td>
<td></td>
</tr>
<tr>
<td>= 0111</td>
<td>= 10001</td>
<td>= 1111</td>
<td></td>
</tr>
</tbody>
</table>

drop carry = 0001
Two’s Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - $bits(x) + bits(-x) = 0$ (ignoring the carry-out bit)
 - This turns out to be the \textit{bitwise complement plus one}
 - What should the 8-bit representation of -1 be?

 \begin{align*}
 00000001 & +???????? \\
 \underline{00000000} & \quad \text{(we want whichever bit string gives the right result)}
 \end{align*}

 \begin{align*}
 00000010 & +???????? \\
 \underline{00000000} & \\
 00000000 & +???????? \\
 \underline{00000000} & \quad \text{(we want whichever bit string gives the right result)}
 \end{align*}
Two’s Complement

- Why does it work?
 - Put another way, for all positive integers \(x \), we want:
 - \(\text{bits}(x) + \text{bits}(\neg x) = 0 \) (ignoring the carry-out bit)
 - This turns out to be the *bitwise complement plus one*
 - What should the 8-bit representation of -1 be?
 \[
 \begin{array}{c}
 00000001 \\
 +11111111 \\
 \hline
 100000000
 \end{array}
 \]
 (we want whichever bit string gives the right result)
Two’s Complement

■ Why does it work?

- Put another way, for all positive integers \(x \), we want:
 - \(\text{bits}(x) + \text{bits}(-x) = 0 \) (ignoring the carry-out bit)

- This turns out to be the *bitwise complement plus one*
 - What should the 8-bit representation of -1 be?
 - \[
 \begin{array}{c}
 \text{00000001} \\
 +\underline{11111111} \\
 \underline{100000000}
 \end{array}
 \]
 (we want whichever bit string gives the right result)
 - \[
 \begin{array}{c}
 \text{00000010} \\
 +\underline{11111110} \\
 \underline{100000000}
 \end{array}
 \]
 \[
 \begin{array}{c}
 \text{00000011} \\
 +\underline{11111101} \\
 \underline{100000000}
 \end{array}
 \]
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps:
 \[6 + 4 = ? \quad 15U + 2U = ? \]
 - If you compute a number that is too small (negative), it wraps:
 \[-7 - 3 = ? \quad 0U - 2U = ? \]
 - Answers are only correct mod \(2^b\)

- The CPU may be capable of “throwing an exception” for overflow on signed values.
 - It won't for unsigned.

- But C and Java just cruise along silently when overflow occurs... Oops.
Conversion Visualized

- **Two’s Complement → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

Unsigned Range
Overflow/Wrapping: Unsigned

addition: drop the carry bit

\[
\begin{align*}
15 & + 2 \\
17 & \\
\underline{10001} & \quad \text{1111 + 0010}
\end{align*}
\]

Modular Arithmetic
Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
-1 & & & & & & & \\
+ 2 & & & & & & & \\
\hline
1 & & & & & & & \\
\end{array}
\]

\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
& & & & & & & & 1111 \\
+ 0010 & & & & & & & \\
\hline
10001 & & & & & & & \\
\end{array}
\]

\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
6 & & & & & & & \\
+ 3 & & & & & & & \\
\hline
9 & & & & & & & \\
\end{array}
\]

\[
\begin{array}{c@{}c@{}c@{}c@{}c@{}c@{}c@{}c@{}c}
& & & & & & & & 0110 \\
+ 0011 & & & & & & & \\
\hline
1001 & & & & & & & \\
\end{array}
\]

Modular Arithmetic
Values To Remember

Unsigned Values
- **UMin** = 0
 - 000...0
- **UMax** = \(2^w - 1\)
 - 111...1

Two’s Complement Values
- **TMin** = \(-2^{w-1}\)
 - 100...0
- **TMax** = \(2^{w-1} - 1\)
 - 011...1
- **Negative one**
 - 111...1 0xF...F

Values for \(W = 32\)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>4,294,967,296</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>2,147,483,647</td>
<td>7F FF FF FF</td>
<td>01111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>TMin</td>
<td>-2,147,483,648</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- Constants
 - By default are considered to be signed integers
 - Use “U” suffix to force unsigned:
 - 0U, 4294967259U
Signed vs. Unsigned in C

- Casting
 - `int tx, ty;`
 - `unsigned ux, uy;`
 - Explicit casting between signed & unsigned:
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
 - Implicit casting also occurs via assignments and function calls:
 - `tx = ux;`
 - `uy = ty;`
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!
 - How does casting between signed and unsigned work?
 - What values are going to be produced?
Signed vs. Unsigned in C

- **Casting**
 - `int tx, ty;
 - `unsigned ux, uy;
 - **Explicit casting between signed & unsigned:**
 - `tx = (int) ux;
 - `uy = (unsigned) ty;
 - **Implicit casting also occurs via assignments and function calls:**
 - `tx = ux;
 - `uy = ty;
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

- **How does casting between signed and unsigned work?**
- **What values are going to be produced?**
 - *Bits are unchanged, just interpreted differently!*
Casting Surprises

- Expression Evaluation
 - If you mix unsigned and signed in a single expression, then signed values are implicitly cast to unsigned.
 - Including comparison operations <, >, ==, <=, >=
 - Examples for \(W = 32 \):
 - \(TMIN = -2,147,483,648 \)
 - \(TMAX = 2,147,483,647 \)

- **Constant\(_1\)**
 - **Constant\(_2\)**
 - **Relation**
 - **Evaluation**

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Sign Extension

- What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer *with same value*

Rule:
- Make k copies of sign bit:
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$
8-bit representations

0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1

C: casting between unsigned and signed just reinterprets the same bits.
Sign Extension

0 0 1 0 4-bit 2
0 0 0 0 0 0 1 0 8-bit 2

1 1 0 0 4-bit -4

? ? ? ? 1 1 0 0 8-bit -4
Sign Extension

0010 4-bit 2

00000010 8-bit 2

1100 4-bit -4

00001100 8-bit 12
Sign Extension

0 0 1 0
4-bit 2

0 0 0 0 0 0 1 0
8-bit 2

1 1 0 0
4-bit -4

1 0 0 0 1 1 0 0
8-bit -116
Sign Extension

\[
\begin{array}{c}
\text{4-bit 2} \\
0010 \\
\text{8-bit 2} \\
00000010
\end{array}
\]

\[
\begin{array}{c}
\text{4-bit -4} \\
1100 \\
\text{8-bit -4} \\
111111100
\end{array}
\]
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```c
short int x =  12345;
int      ix = (int) x;
short int y = -12345;
int      iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Shift Operations

- **Left shift:** \(x << y \)
 - Shift bit vector \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift:** \(x >> y \)
 - Shift bit-vector \(x \) right by \(y \) positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x \)

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x << 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x << 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>

The behavior of \(>> \) in C depends on the compiler! It is *arithmetic* shift right in GCC. Java: \(>>> \) is logical shift right; \(>> \) is arithmetic shift right.
Shift Operations

- **Left shift:** \(x \ll y \)
 - Shift bit vector \(x \) left by \(y \) positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift:** \(x \gg y \)
 - Shift bit-vector \(x \) right by \(y \) positions
 - Throw away extra bits on right
 - **Logical shift** (for unsigned values)
 - Fill with 0s on left
 - **Arithmetic shift** (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x \)
 - *Why is this useful?*

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Logical (\gg 2)</td>
<td></td>
</tr>
<tr>
<td>Arithmetic (\gg 2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td></td>
</tr>
<tr>
<td>Logical (\gg 2)</td>
<td></td>
</tr>
<tr>
<td>Arithmetic (\gg 2)</td>
<td></td>
</tr>
</tbody>
</table>

\(x \gg 9? \)

The behavior of \(\gg \) in C depends on the compiler! It is *arithmetic* shift right in GCC. Java: \(>>> \) is logical shift right; \(\gg \) is arithmetic shift right.
What happens when...

- $x >> n$
- $x << m$
What happens when...

- $x \gg n$: divide by 2^n

- $x \ll m$: multiply by 2^m

faster than general multiple or divide operations
Shifting and Arithmetic

\[
x = 27; \\
y = x \ll 2; \\
y == 108
\]

overflow

\[
0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \\
x*2^n
\]

logical shift left:
shift in zeros from the right

\[
0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0
\]

\[
x/2^n \]
logical shift right:
shift in zeros from the left

\[
1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
x/2^n
\]

rounding (down)

\[
1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
x*2^n
\]

unsigned
\[
0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
y == 59
\]

\[
0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \\
x = 237; \\
y = x \gg 2; \\
y == 59
\]
Shifting and Arithmetic

signed
\[x = -101; \]
\[y = x \ll 2; \]
\[y == 108 \]

logical shift left:
shift in zeros from the right

overflow

\[x/2^n \]

arithmetic shift right:
shift in copies of most significant bit from the left

clarification from Mon.: shifts by \(n < 0 \) or \(n \geq \) word size are undefined

\[x = -19; \]
\[y = x \gg 2; \]
\[y == -5 \]
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

\[
x \quad 01100001 \quad 01100010 \quad 01100011 \quad 01100100
\]
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \((x >> 16) \) & 0xFF

<table>
<thead>
<tr>
<th></th>
<th>01100001</th>
<th>01100010</th>
<th>01100011</th>
<th>01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>01100001</td>
<td>01100010</td>
<td>01100011</td>
<td>01100100</td>
</tr>
<tr>
<td>(x >> 16)</td>
<td>00000000</td>
<td>00000000</td>
<td>01100001</td>
<td>01100010</td>
</tr>
<tr>
<td>((x >> 16)) & 0xFF</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \((x >> 16) \& 0xFF \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x >> 16)</td>
<td>00000000 00000000 01100001 01100010</td>
</tr>
<tr>
<td>((x >> 16) & 0xFF)</td>
<td>00000000 00000000 00000000 11111111 00000000 01100010</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer:
 - \((x >> 31) \& 1 \) - need the “\& 1” to clear out all other bits except LSB

- Conditionals as Boolean expressions (assuming \(x \) is 0 or 1)
 - if \((x) \) \(a=y \) else \(a=z \); which is the same as \(a = x ? y : z \);
 - Can be re-written (assuming arithmetic right shift) as:
 \(a = ((x << 31) >> 31) \& y) | (((!x) << 31) >> 31) \& z);
Multiplication

- What do you get when you multiply 9×9?

- What about $2^{30} \times 3$?

- $2^{30} \times 5$?

- $-2^{31} \times -2^{31}$?
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]
Power-of-2 Multiply with Shift

Operation
- \(u << k \) gives \(u \times 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

True Product: \(w+k \) bits

Discard \(k \) bits: \(w \) bits

Examples
- \(u << 3 \) \(\Rightarrow u \times 8 \)
- \(u << 5 - u << 3 \) \(\Rightarrow u \times 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
}
Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)
Fractional Binary Numbers

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 and 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 and 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>47/64</td>
<td>0.101111₁₀</td>
</tr>
</tbody>
</table>

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.11111...₂ are just below 1.0

- **Limitations:**
 - Exact representation possible only for numbers of the form \(x \times 2^y \)
 - Other rational numbers have repeating bit representations
 - \(1/3 = 0.33333...₁₀ = 0.01010101[01]...₂ \)
Fixed Point Representation

- **Implied binary point.** Examples:
 - #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [. \ b_2 \ b_1 \ b_0 \]
 - #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [. \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- **Same hardware as for integer arithmetic.**
 - #3: integers! the binary point is after bit 0
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ [. \]

- **Fixed point = fixed range and fixed precision**
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
IEEE Floating Point

- Analogous to scientific notation
 - 12000000 1.2 x 10^7 C: 1.2e7
 - 0.0000012 1.2 x 10^{-6} C: 1.2e-6

- IEEE Standard 754 used by all major CPUs today

- Driven by numerical concerns
 - Rounding, overflow, underflow
 - Numerically well-behaved, but hard to make fast in hardware
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]

 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]

 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- Representation in memory:
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is \textit{not equal} to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is \textit{not equal} to \(M \))
Precisions

- Single precision: 32 bits

```
  s  exp  frac
1 bit  8 bits  23 bits
```

- Double precision: 64 bits

```
  s  exp  frac
1 bit  11 bits  52 bits
```

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

\[V = (-1)^S \times M \times 2^E \]

- “Normalized” = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0? Or special / undefined values like 1.0/0.0?
Normalization and Special Values

\[V = (-1)^S \times M \times 2^E \]

- **“Normalized”** = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2^5 and 1.1 x 2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

- **Special values:**
 - **zero:** \(s = 0 \quad \text{exp} = 00...0 \quad \text{frac} = 00...0 \)
 - **+\(\infty \), -\(\infty \): \(\text{exp} = 11...1 \quad \text{frac} = 00...0 \)

\[
1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty
\]

- **NaN** (“Not a Number”): \(\text{exp} = 11...1 \quad \text{frac} \neq 00...0 \)
 - Results from operations with undefined result: sqrt(-1), \(\infty - \infty \), \(\infty \times 0 \), etc.
 - note: exp=11...1 and exp=00...0 are reserved, limiting exp range...
Floating Point Operations: Basic Idea

\[V = (-1)^s \times M \times 2^E \]

- \(x +_f y = \text{Round}(x + y) \)
- \(x *_f y = \text{Round}(x \times y) \)

Basic idea for floating point operations:

- First, *compute the exact result*
- Then, *round* the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into \(\text{frac} \)
Floating Point Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \ * \ (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s\): \(s_1 \ ^\land \ s_2\)
 - Significand \(M\): \(M_1 \ * \ M_2\)
 - Exponent \(E\): \(E_1 \ + \ E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision
Floating Point Addition

\[(-1)^{s_1} M_1 \cdot 2^{E_1} + (-1)^{s_2} M_2 \cdot 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s M \cdot 2^E \)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit fraction precision
Rounding modes

- **Possible rounding modes (illustrate with dollar rounding):**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-1</td>
</tr>
<tr>
<td>Round-down ($-\infty$)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-2</td>
</tr>
<tr>
<td>Round-up ($+\infty$)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>$-1</td>
</tr>
<tr>
<td>Round-to-nearest</td>
<td>$1</td>
<td>$2</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Round-to-even</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$-2</td>
</tr>
</tbody>
</table>

- **Round-to-even avoids statistical bias in repeated rounding.**
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$

- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point operations are not always associative or distributive, due to rounding!
 - $(3.14 + 1e10) - 1e10 \neq 3.14 + (1e10 - 1e10)$
 - $1e20 \times (1e20 - 1e20) \neq (1e20 \times 1e20) - (1e20 \times 1e20)$
Floating Point in C

- **C offers two levels of precision**

  ```
  float  single precision (32-bit)
  double double precision (64-bit)
  ```

- **#include <math.h> to get INFINITY and NAN constants**

- **Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results**
 - Just avoid them!
Floating Point in C

- Conversions between data types:
 - Casting between int, float, and double changes the bit representation.
 - int → float
 - May be rounded; overflow not possible
 - int → double or float → double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
 - long int → double
 - Rounded or exact, depending on word size
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - Not defined when out of range or NaN: generally sets to Tmin
Number Representation Really Matters

- **1991: Patriot missile targeting error**
 - clock skew due to conversion from integer to floating point

- **1996: Ariane 5 rocket exploded ($1 billion)**
 - overflow converting 64-bit floating point to 16-bit integer

- **2000: Y2K problem**
 - limited (decimal) representation: overflow, wrap-around

- **2038: Unix epoch rollover**
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to $TMin$ in 2038

- **other related bugs**
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");
 return 0;
}
Memory Referencing Bug

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault

Explanation:

<table>
<thead>
<tr>
<th>Saved State</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td>3</td>
</tr>
<tr>
<td>d3 ... d0</td>
<td>2</td>
</tr>
<tr>
<td>a[1]</td>
<td>1</td>
</tr>
<tr>
<td>a[0]</td>
<td>0</td>
</tr>
</tbody>
</table>

Location accessed by fun(i)
Representing 3.14 as a Double FP Number

- 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
- 3.14 = 11.0010 0011 1101 0111 0000 1010 000...
- \((-1)^s\) \(M\) \(2^E\)
 - \(S = 0\) encoded as 0
 - \(M = 1.1001 0001 1110 1011 1000 0101 0000\).... (leading 1 left out)
 - \(E = 1\) encoded as 1024 (with bias)

<table>
<thead>
<tr>
<th>s</th>
<th>exp (11)</th>
<th>frac (first 20 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 0000 0000</td>
<td>1001 0001 1110 1011 1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>frac (the other 32 bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0101 0000 ...</td>
</tr>
</tbody>
</table>
Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault

Saved State

d7 ... d4	0100 0000 0000 1001 0001 1110 1011 1000
d3 ... d0	0101 0000 ...
a[1]	
a[0]	

Location accessed by fun(i)
Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault

<table>
<thead>
<tr>
<th>Saved State</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>d7 ... d4</td>
<td>0100 0000 0000 1001 0001 1110 1011 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d3 ... d0</td>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a[1]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a[0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault

Saved State

<table>
<thead>
<tr>
<th>d7</th>
<th>d6</th>
<th>d5</th>
<th>d4</th>
<th>d3</th>
<th>d2</th>
<th>d1</th>
<th>d0</th>
<th>a[1]</th>
<th>a[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 0000 0000 0000 0000 0000 0000 0000</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0101 0000 ...</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0100 ...</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0010 ...</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000 ...</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location accessed by fun(i)
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Many more details for the curious...

- Exponent bias
- Denormalized values – to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

We won’t be using or testing you on any of these extras in 351.
Normalized Values

\[V = (-1)^S \times M \times 2^E \]

- **Condition:** \(\exp \neq 000...0 \) and \(\exp \neq 111...1 \)
- **Exponent coded as biased value:** \(E = \exp - \text{Bias} \)
 - \(\exp \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k == \# \text{ bits in } \exp \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\exp: 1...254, E: -126...127 \))
 - Double precision: 1023 (so \(\exp: 1...2046, E: -1022...1023 \))
 - These enable negative values for \(E \), for representing very small values

- **Significand coded with implied leading 1:** \(M = 1.\xxx...x_2 \)
 - \(\xxx...x \): the \(n \) bits of \(\text{frac} \)
 - Minimum when \(000...0 \) \((M = 1.0) \)
 - Maximum when \(111...1 \) \((M = 2.0 - \varepsilon) \)
 - Get extra leading bit for “free”
Normalized Encoding Example

\[V = (-1)^S \times M \times 2^E \]

- **Value:** float \(f = 12345.0; \)
 - \(12345_{10} = 11000000111001_2 \)
 - \(= 1.1000000111001_2 \times 2^{13} \) (normalized form)

- **Significand:**
 \(M = 1.1000000111001_2 \)
 \(\frac{\text{frac}}{} = 1000000111001000000000000_2 \)

- **Exponent:** \(E = \text{exp} - \text{Bias}, \text{so} \ \text{exp} = E + \text{Bias} \)
 \(E = 13 \)
 \(\text{Bias} = 127 \)
 \(\text{exp} = 140 = 10001100_2 \)

- **Result:**
 \(\begin{array}{ccc}
 s & \text{exp} & \text{frac} \\
 0 & 10001100 & 10000001110010000000000000
 \end{array} \)
Denormalized Values

- Condition: \(\text{exp} = 000...0 \)

- Exponent value: \(E = \text{exp} - \text{Bias} + 1 \) (instead of \(E = \text{exp} - \text{Bias} \))

- Significand coded with implied leading 0: \(M = 0 \cdot \text{xxx}...\text{x}_2 \)
 - \(\text{xxx}...\text{x} \): bits of \(\text{frac} \)

- Cases
 - \(\text{exp} = 000...0 \), \(\text{frac} = 000...0 \)
 - Represents value 0
 - Note distinct values: +0 and –0 (why?)
 - \(\text{exp} = 000...0 \), \(\text{frac} \neq 000...0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** \(\text{exp} = 111...1 \)

- **Case:** \(\text{exp} = 111...1, \text{frac} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -1.0/0.0 = -\infty \)

- **Case:** \(\text{exp} = 111...1, \text{frac} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \ \infty - \infty, \ \infty \times 0 \)
Visualization: Floating Point Encodings

-∞ - Normalized - Denorm + Denorm + Normalized +∞

NaN -0 +0 NaN
Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the \texttt{frac}

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>0</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers

0	0001 000	-6	8/8*1/64 = 8/512	
0	0001 001	-6	9/8*1/64 = 9/512	
...	0	0110 110	-1	14/8*1/2 = 14/16
0	0110 111	-1	15/8*1/2 = 15/16	
0	0111 000	0	8/8*1 = 1	
0	0111 001	0	9/8*1 = 9/8	
0	0111 010	0	10/8*1 = 10/8	
...	0	1110 110	7	14/8*128 = 224
0	1110 111	7	15/8*128 = 240	
0	1111 000	n/a/inf		

Normalized numbers

Integers & Floats

- Spring 2014
- University of Washington
Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

![Diagram showing distribution of values with 6-bit IEEE-like format]
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Single } \approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Double } \approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Single } \approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Double } \approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Just larger than largest denormalized}$</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Single } \approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\text{Double } \approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \ * \ (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^{s} M \ 2^{E}\)
 - Sign s: \(s_1 \ ^{\oplus} \ s_2\) \ // xor of s1 and s2
 - Significand M: \(M_1 \ * \ M_2\)
 - Exponent E: \(E_1 \ + \ E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit frac precision
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s M \ 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - If \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit frac precision
Closer Look at Round-To-Even

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Half way” when bits to right of rounding position = 100...2

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.000112</td>
<td>10.002</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.001102</td>
<td>10.012</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111002</td>
<td>11.002</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.101002</td>
<td>10.102</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>