
CSE 351: The
Hardware/Software Interface

Section 9

Lab 5

Dynamic memory allocation

In order to allocate memory that persists

across function calls, one can use malloc in C

to request heap space of a particular size

Unlike with stack-allocated memory,

malloced memory persists until it is explicitly

returned to the C library with a call to free

3/7/13 2

malloc: behind the scenes

As a process allocates memory through malloc,

the C library makes requests to the operating

system to increase the size of its data segment

 This is accomplished via calls to sbrk (see man 2

sbrk), which changes the location of the “program

break” denoting the end of the data segment

When a process invokes malloc, the C library

returns the address of an unused data block

somewhere inside of the data segment
3/7/13 3

free: behind the scenes

When a process frees a block of memory,

that block is marked as available and can

now be reused through subsequent calls to
malloc

To watch this happen in practice, try using

GDB on a program that allocates and frees a

block of memory using malloc and free. How

do the bytes immediately preceding the

block of memory change over time?
3/7/13 4

Lab 5

Memory allocator: Implement custom

versions of malloc and free called

mm_malloc and mm_free

Get experience with how dynamic memory

allocation works

Think critically about memory and pointers

3/7/13 5

Free list

The primary data structure used in lab 5 is a

free list. Entries in this list store information

about how large they are and where the next

and previous free entries are

struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

3/7/13 6

Free list

struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

 sizeAndTags: The upper 61 bits store the total size of
this block, the lowest bit indicates whether the block
is used, and the second-lowest bit indicates whether
the previous block is free. Only the upper 61 bits of
the size are needed since block are 8-byte aligned

 next and prev: Pointers to the next and previous free
blocks

3/7/13 7

Free block format

Note that the size

and tags are given at

both the beginning

and the end. What

benefit does this

provide?

3/7/13 8

sizeAndTags (64 bits)

next ptr (64 bits)

prev ptr (64 bits)

unused space (??? bits)

sizeAndTags (64 bits)

Used block format

Used blocks do not

store prev and next

pointers. What

should happen when

a used block is

mm_freed?

Data sections are

always padded to an

8-byte boundary
3/7/13 9

sizeAndTags (64 bits)

data (??? bits)

Free list

3/7/13 10

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

size: 48

used: true

prev used:

false

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

mm_malloc

 mm_malloc takes a single argument of how much

memory to allocate

 mm_malloc scans through the free list, looking for

a large enough unused block to fulfill the

request

 If a large enough block is found, it is removed

from the free list and marked as used

 Otherwise, the program increases the size of the

heap to make space for a new block to return
3/7/13 11

mm_free

 mm_free returns a now-unused block to the

free list as the head of the list
Note that the “previous” and “next” blocks can

actually be anywhere in memory relative to this

one!

If the blocks before or after the block in

memory are also free, mm_free combines

them into a single unused block
Why combine free blocks into larger ones?

 3/7/13 12

mm_free example

3/7/13 13

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

size: 48

used: true

prev used:

false

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

Let’s suppose that

we’re freeing this block

mm_free example

3/7/13 14

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

Update used status and

set sizeAndTags in footer

size: 48

used: false

prev used:

false

mm_free example

3/7/13 15

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2
Block 2 next = block 5

Block 2 prev = block 0
Block 5 prev = block 2

Return block to start of

free list

size: 48

used: false

prev used:

false

Block 3 next = block 0

Block 0 prev = block 3

mm_free example

3/7/13 16

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 5

Block 5 prev = block 0

Coalesce nearby free

blocks (intermediate step

shown)

mm_free example

3/7/13 17

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 4

Block 4 prev = block 0

Coalesce nearby free

blocks (restore next and

prev pointers)

Block 2 next = block 0

Block 0 prev = block 2

mm_free example

3/7/13 18

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 4

Block 4 prev = block 0

All done! Free list now

starts at block 2 and ends

at block 4

Block 2 next = block 0

Block 0 prev = block 2

Words of advice

The size portion of sizeAndTags can be

accessed via the SIZE() macro. To assign the

size, bitwise “or” in the existing tags and set

the sizeAndTags field

The preceding block is the block before this

one sequentially in memory, not necessarily

the one that the prev pointer refers to

A valid solution to this assignment is not very

long, but getting it right is tricky
3/7/13 19

Words of advice

Make use of the provided functions! There is

already code for searching the free list for an

empty block, inserting into it, removing from

it, and coalescing free nodes

See searchFreeList, insertFreeBlock,

removeFreeBlock, and coalesceFreeBlock in
mm.c

3/7/13 20

Words of advice

 If you want to test mm_malloc and mm_free with

custom code, define a new Makefile rule:
malloc_test: malloc_test.o mm.o memlib.o

 $(CC) $(CFLAGS) -o malloc_test \

 malloc_test.o mm.o memlib.o

malloc_test.o: malloc_test.c mm.h memlib.h

Before calling mm_malloc for the first time, you’ll

need to invoke mem_init() from memlib.h and

then mm_init() from mm.h

Use make malloc_test to build the executable
3/7/13 21

Example program

#include "memlib.h"

#include "mm.h"

int main(int argc, char* argv[]) {

 mem_init();

 mm_init();

 int* a = (int*) mm_malloc(sizeof(int));

 mm_free(a);

 return 0;

}

3/7/13 22

Demo time

Let’s look at the provided code for the lab

If there is time at the end, investigate how

malloc and free allocate and free memory

using GDB

3/7/13 23

