CSE 351: The
Hardware/Software Interface




Dynamic memory allocation

3/7/13

In order to allocate

memory that persists

across function calls, one can use maliiocin C
to request heap space of a particular size

Unlike with stack-a

located memory,

malloced memory
returned to the C i

oersists until it is explicitly
brary with a call to free



3/7/13

malloc: behind the scenes

As a process allocates memory through malioc,
the C library makes requests to the operating
system to increase the size of its data segment

* This is accomplished via calls to sbrk (see man 2
sbrk), which changes the location of the “program
break” denoting the end of the data segment

When a process invokes malloc, the Clibrary
returns the address of an unused data block
somewhere inside of the data segment



3/7/13

free: behind the scenes

When a process trees a block of memory,
that block is marked as available and can

now be reused through subsequent calls to
malloc

To watch this happen in practice, try using
GDB on a program that allocates and frees a
block of memory using malioc and free. How
do the bytes immediately preceding the
block of memory change over time?



Lab 5

Memory allocator: Implement custom
versions of malloc and free called
mm_malloc and mm_free

Get experience with how dynamic memory
allocation works

Think critically about memory and pointers

3/7/13



Free list

The primary data structure used in lab 5 is a
free list. Entries in this list store information
about how large they are and where the next
and previous free entries are

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

s

3/7/13



Free list

struct BlockInfo {
size t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

¥

sizeAndTags: The upper 61 bits store the total size of
this block, the lowest bit indicates whether the block
is used, and the second-lowest bit indicates whether
the previous block is free. Only the upper 61 bits of
the size are needed since block are 8-byte aligned

next and prev: Pointers to the next and previous free
blocks

3/7/13



Free block format

Note that the size
and tags are given at
both the beginning
and the end. What
benefit does this

provide?

3/7/13



Used block format

3/7/13

sizeAndTags (64 bits)

data (222 bits)

Used blocks do not
store prev and next
pointers. What
should happen when
a used block is
mm_freed?

Data sections are
always padded to an
8-byte boundary



3/7/13

Block 2 prev = block 0

size: 32
used:
frue
prev
used:
false

Block O next = block 2

Free list

Block 5 prev = block 2

Siz
size: 48 e:
used: true | 16
prev used:
false

Block 2 next = block 5

10



3/7/13

mm malloc

nm malloc takes a single argument of how much
memory to allocate
nm malloc scans through the free list, looking for

a large enough unused block to fulfill the
request

If a large enough block is found, it is removed
from the free list and marked as used

* Otherwise, the program increases the size of the
heap to make space for a new block to return

11



3/7/13

mm free

nm free returns a now-unused block to the

free list as the head of the list

* Note that the “previous” and “next” blocks can
actually be anywhere in memory relative to this
onel

If the blocks before or after the block in
memory are also free, mm free combines

them into a single unused block
* Why combine free blocks into larger ones?

12



mm_free example

Block 2 prev = block 0 Block 5 prev = block 2

Siz
size: 48 e:.

size: 32
used:

true used: true | 16
prev prev used:
used: false

false

Block O next = block 2 Block 2 next = block 5

3/7/13 13



mm_free example

Block 2 prev = block 0 Block 5 prev = block 2

size: 32
used:
frue
prev
used:
false

Block O next = block 2 Block 2 next = block 5

3/7/13

14



mm_free example

Block O prev = block 3
Block 5 prev = block 2

Block 2 prev = block 0

size: 32
used:
frue
prev
used:
false

~—_J

Block O next = block 2
Block 2 next = block 5

Block 3 next = block O

3/7/13

15



3/7/13

mm_free example

Block 5 prev = block 0

size: 32
used:
frue
prev
used:
false

Block O next = block 5

16



3/7/13

mm_free example

Block O prev = block 2 Block 4 prev = block 0

size: 32
used:
frue
prev
used:
false

Block 2 next = block 0 Block O next = block 4

17



3/7/13

mm_free example

Block O prev = block 2 Block 4 prev = block 0

size: 32
used:
frue
prev
used:
false

Block 2 next = block 0 Block O next = block 4

18



3/7/13

Words of advice

The size portion of sizeandTags can be
accessed via the s1ze () macro. To assign the
size, bitwise “or” in the existing tags and set
the sizeandTags field

The preceding block is the block before this
one sequentially in memory, not necessarily
the one that the prev pointer refers to

A valid solution to this assignment is not very
long, but getting it right is tricky

19



3/7/13

Words of advice

Make use of the provided functions! There is
already code for searching the free list for an
empty block, inserting into it, removing from
it, and coalescing free nodes

See searchFreelist, insertFreeBlock,

removeFreeBlock, and coalesceFreeBlock in

mm. C

20



Words of advice

If you want to test mm malloc and mm free with
custom code, define a new Makefile rule:

malloc test: malloc test.o mm.o memlib.o
$(CC) $(CFLAGS) -o malloc test \

malloc test.o mm.o memlib.o

malloc test.o: malloc test.c mm.h memlib.h

Before calling mm malloc for the first time, you'll
need to invoke mem init () from memlib.h and
thenmm init () frommm.h

Use make malloc test to build the executable

3/7/13

21



3/7/13

Example program

#include "memlib.h"

#include "mm.h"

int main(int argc, char* argvl[]) {
mem init () ;
mm init();
int* a = (1nt*) mm malloc(sizeof (int));
mm free(a);

return 0;

22



3/7/13

Demo fime

Let’s look at the provided code for the lab
If there is time at the end, investigate how

malloc and free allocate and free memory
using GDB

23



