
CSE 351: Week 8

Tom Bergan, TA

1

Today

•What happens when a program starts running?

• Address spaces

• Virtual memory

2

Let’s start a program

3

The shell executes this code:
 execl(“./bufbomb”, “-u”, “tbergan”, NULL);

$./bufbomb -u tbergan

Goal: execute main() in ./bufbomb
 int main(int argc, char *argv[]) {
 ...
 }
Where
 argc = 3
 argv[0] = “./bufbomb”
 argv[1] = “-u”
 argv[2] = “tbergan”

How does exec() work?

What happens on exec()?

4

Steps to exec:
 1. Load program executable
 2. Copy the args into memory
 3. Setup the registers
 4. Jump to main()

Memory

0 264-1
stackbufbomb code

%rdi argc = 3

Registers

%rsp

%rsi argv[] = ·

Args get copied
onto the stack

The Stack

“-u”

“tbergan”

“./bufbomb”

argv[2]

argv[1]

argv[0]

Goal: execute main() in ./bufbomb
 int main(int argc, char *argv[]) {
 ...
 }
Where
 argc = 3
 argv[0] = “./bufbomb”
 argv[1] = “-u”
 argv[2] = “tbergan”

5

here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

p2 address space

0 264-1

Each process has its own address space

NOT the same

6

here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

0 264-1

Address spaces are virtual

NOT the same

physical memory

Virtual Address Spaces

7

here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

physical
memory

page
table

virtual address physical address

page
table

Virtual Address Spaces

8

P1 address space

0 264-1
heap physical

memory

stack

P2 address space

0 264-1
heap stack

page
table

code

code

Virtual address translation

9

page table

Virtual
Page #

Physical
Page #

2 5

memory is
divided into

pages

Step 1: translate the page #
Step 2: translate the offset

virtual
memory

virtual
address

physical
memory

physical
address

Virtual address translation

10

virtual address 0x0041ab8fe023ecd5

page table

Virtual
Page #

Physical
Page #

0x0041ab... 0x5230a...

0041ab8fe023e cd5

5230abeab44cf cd5physical address

virtual page # offset

physical page # offset

page
table

Virtual address translation

11

page table

Virtual
Page #

Physical
Page #

0x0041ab... 0x5230a...

0041ab8fe023e cd5

5230abeab44cf cd5

virtual
memory

5230abeab44cf 000

0041ab8fe023e 000

physical
memory

page
table

Virtual Address Spaces

12

P1 address space

0 264-1
heap physical

memory

stack

P2 address space

0 264-1
heap stack

page
table

code

code

Do you ever want
to share memory
across processes?

page
table

Virtual Address Spaces

13

P1 address space

0 264-1
physical
memory

P2 address space

0 264-1

page
table

Do you ever want
to share memory
across processes?
 - yes! shared libraries!

heap stack

heap stack

code

code

shared lib

shared lib

14

physical
memory

P2 address space

0 264-1

A shared library:
 - think printf(): *.so on linux, *.dll on windows
 - share code pages in multiple address spaces
 (saves space!)

Problem: can’t let P2 overwrite to P1’s code!
 - solution: map pages read-only

heap stackcode shared lib

P1 address space

0 264-1
heap stackcode shared lib

Shared Libraries

15

P1 address space

0 264-1
physical
memory

P2 address space

0 264-1

page table
Virtual

Address
Physical
Address

Protection
Bits

0x0041ab... ✘ writable
pages mapped read-only

Virtual
Address

Physical
Address

Protection
Bits

0x07eff... ✘ writable

page table

heap stackcode shared lib

heap stackcode shared lib

Shared Libraries

Page table protection bits
(partial list)

16

•writable bit
 - is the page writable?
 - when unset, the page is read-only

 Why would you want this?
 - protect code pages (don’t accidentally overwrite)
 - read-only data (e.g. constant strings literals: “xyz”)

• executable bit
 - is the page executable?
 - when unset, code on the page cannot be executed

 Why would you want this?
 - protect non-code pages (e.g. prevents buffer overflow exploits)
 - read-only data (e.g. constant strings literals: “xyz”)

17

Shared Libraries

New steps to start a program:
 1. Load program executable
 1a. Load shared libraries
 2. Copy the args into memory
 3. Setup the registers
 4. Jump to main()

Shared libraries are loaded at runtime

18

P1 address space

0 264-1

 ⋮
0x3FC memcpy:
 ⋮

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call memcpy
 ⋮

How do we know the address of
memcpy?
 - it depends on where the lib was loaded
 - solution: jump table

P2 address space

0 264-1

 ⋮
0xB05 memcpy:
 ⋮

heap stackcode shared lib

heap stackcode shared lib

Shared Libraries

19

P1 address space

0 264-1

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call *jumpTable[42]
 ⋮

Jump table initially empty

Library call indirects through jump table

 jumpTable = {
 [0] = ?
 [1] = ?
 ⋮
 [42] = ?
 ⋮
 }

Shared Libraries

heap stackcode

20

P1 address space

0 264-1

 ⋮
0x0A0 call foo
 ⋮
0x105 foo:
 call *jumpTable[42]
 ⋮

 jumpTable = {
 [0] = ?
 [1] = ?
 ⋮
 [42] = &memcpy,
 ⋮ 0x3FC
 }

 ⋮
0x3FC memcpy:
 ⋮

Jump table fixed when library is loaded
 - by a program called a loader

Shared Libraries

heap stackcode shared lib

