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Today

•What happens when a program starts running?

• Address spaces

• Virtual memory
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Let’s start a program
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The shell executes this code:
    execl(“./bufbomb”,  “-u”,  “tbergan”,  NULL);

$ ./bufbomb  -u  tbergan

Goal: execute main() in ./bufbomb
   int main(int argc, char *argv[]) {
      ...
   }
Where
   argc = 3
   argv[0] = “./bufbomb”
   argv[1] = “-u”
   argv[2] = “tbergan”

How does exec() work?



What happens on exec()?
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Steps to exec:
    1.  Load program executable
    2.  Copy the args into memory
    3.  Setup the registers
    4.  Jump to main()

Memory

0 264-1
stackbufbomb code

%rdi argc = 3

Registers

%rsp

%rsi argv[] = ·

Args get copied
onto the stack

The Stack

“-u”

“tbergan”

“./bufbomb”

argv[2]

argv[1]

argv[0]

Goal: execute main() in ./bufbomb
   int main(int argc, char *argv[]) {
      ...
   }
Where
   argc = 3
   argv[0] = “./bufbomb”
   argv[1] = “-u”
   argv[2] = “tbergan”
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here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

p2 address space

0 264-1

Each process has its own address space

NOT the same
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here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

0 264-1

Address spaces are virtual

NOT the same

physical memory



Virtual Address Spaces
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here is a pointer
0x0041ab8fe023ecd5p:

p1 address space

0 264-1

physical
memory

page 
table 

virtual address physical address



page 
table 

Virtual Address Spaces
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P1 address space

0 264-1
heap physical

memory

stack

P2 address space

0 264-1
heap stack

page 
table 

code

code



Virtual address translation
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page table

Virtual
Page #

Physical
Page #

2 5

memory is
divided into

pages

Step 1:  translate the page #
Step 2:  translate the offset

virtual
memory

virtual
address

physical
memory

physical
address



Virtual address translation
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virtual address 0x0041ab8fe023ecd5

page table

Virtual
Page #

Physical
Page #

0x0041ab... 0x5230a...

0041ab8fe023e cd5

5230abeab44cf cd5physical address

virtual page # offset

physical page # offset

page 
table 



Virtual address translation
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page table

Virtual
Page #

Physical
Page #

0x0041ab... 0x5230a...

0041ab8fe023e cd5

5230abeab44cf cd5

virtual
memory

5230abeab44cf 000

0041ab8fe023e 000

physical
memory



page 
table 

Virtual Address Spaces
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P1 address space

0 264-1
heap physical

memory

stack

P2 address space

0 264-1
heap stack

page 
table 

code

code

Do you ever want
to share memory
across processes?



page 
table 

Virtual Address Spaces
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P1 address space

0 264-1
physical
memory

P2 address space

0 264-1

page 
table 

Do you ever want
to share memory
across processes?
    - yes! shared libraries!

heap stack

heap stack

code

code

shared lib

shared lib
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physical
memory

P2 address space

0 264-1

A shared library:
    - think printf():  *.so on linux,  *.dll on windows
    - share code pages in multiple address spaces
      (saves space!)

Problem: can’t let P2 overwrite to P1’s code!
    - solution: map pages read-only

heap stackcode shared lib

P1 address space

0 264-1
heap stackcode shared lib

Shared Libraries
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P1 address space

0 264-1
physical
memory

P2 address space

0 264-1

page table
Virtual

Address
Physical
Address

Protection
Bits

0x0041ab... ✘ writable
pages mapped read-only

Virtual
Address

Physical
Address

Protection
Bits

0x07eff... ✘ writable

page table

heap stackcode shared lib

heap stackcode shared lib

Shared Libraries



Page table protection bits
(partial list)
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•writable bit
    - is the page writable?
    - when unset, the page is read-only

        Why would you want this?
         - protect code pages (don’t accidentally overwrite)
         - read-only data (e.g. constant strings literals: “xyz”)

• executable bit
    - is the page executable?
    - when unset, code on the page cannot be executed

        Why would you want this?
         - protect non-code pages (e.g. prevents buffer overflow exploits)
         - read-only data (e.g. constant strings literals: “xyz”)
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Shared Libraries

New steps to start a program:
    1.  Load program executable
    1a.  Load shared libraries
    2.  Copy the args into memory
    3.  Setup the registers
    4.  Jump to main()

Shared libraries are loaded at runtime
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P1 address space

0 264-1

              ⋮
0x3FC  memcpy:
              ⋮

             ⋮
0x0A0  call  foo
             ⋮
0x105  foo:
           call  memcpy
             ⋮

How do we know the address of
memcpy?
     - it depends on where the lib was loaded
     - solution:  jump table

P2 address space

0 264-1

              ⋮
0xB05  memcpy:
              ⋮

heap stackcode shared lib

heap stackcode shared lib

Shared Libraries
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P1 address space

0 264-1

             ⋮
0x0A0  call  foo
             ⋮
0x105  foo:
           call  *jumpTable[42]
             ⋮

Jump table initially empty

Library call indirects through jump table

   jumpTable = {
       [0] = ?
       [1] = ?
        ⋮
      [42] = ?
        ⋮
    }

Shared Libraries

heap stackcode
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P1 address space

0 264-1

             ⋮
0x0A0  call  foo
             ⋮
0x105  foo:
           call  *jumpTable[42]
             ⋮

   jumpTable = {
       [0] = ?
       [1] = ?
        ⋮
      [42] = &memcpy,
        ⋮        0x3FC
    }

              ⋮
0x3FC  memcpy:
              ⋮

Jump table fixed when library is loaded
     - by a program called a loader

Shared Libraries

heap stackcode shared lib


