CSE 351: Week 8

Tom Bergan, TA

Today

® What happens when a program starts running?
® Address spaces

® Virtual memory

Let’s start a program

$./bufbomb -u tbergan

Goal: execute main() in ./bufbomb
int main(int argc, char *argv[]) {

}

Where
argc = 3
argv[0] = “./bufbomb”
argv[l] = “-u”"
argv[2] = “tbergan”

The shell executes this code:
execl(“./bufbomb”, “-u”, “tbergan”, NULL);

How does exec() work?

What happens on exec()?

Memory
bufbomb code stack
0 264 The Stack
Steps to exec: “tbergan”

I. Load program executable
2. Copy the args into memory Args get copied “

3. Setup the registers onto the stack
4. Jump to main()

“/bufbomb”
conr —— Registers e
oal: execute main() in ./bufbomb .

int main(int argc, char *argv[]) { trdi arge = 3 argv[|]

) 3rsi | argv[] = \\\\\$ argv[0]
Where Srsp —

argc = 3

argv[0] = “./bufbomb”

argv[l] = “-u”

argv[2] = “tbergan”

Each process has its own address space

here is a pointer
P:| 0x004 |ab8fe023ecd5

pl address space

0 A 264

. NOT the same

p2 address space v

0 264- |

Address spaces are virtual

here is a pointer
P:| 0x0041ab8fe023ecd5

pl address space

0 A 264

NOT the same

physical memory

0 264- |

Virtual Address Spaces

here is a pointer

P:| 0x004|ab8fe023ecd5 physical
memory

pl address space

0 ; 2641

. page
U > table | -coo
virtual address physical address

Virtual Address Spaces

P, address space

code heap stack

0 ; 264

physical
memory

i page
"""" >| table >

page
p > table >

P, address space

code heap stack

0 264- |

Virtual address translation

virtual
memory

memory is
divided into

pages\\\\

virtual
address

" u L
A
-
.

page table

Virtual | Physical
Page # | Page #

Step I: translate the page #
Step 2: translate the offset

physical
memory

| physical
address

Virtual address translation

virtual address | 0x0041ab8fe023ecd5

!

0041ab8fe023e | cd5 | ---vvveeee virtual page # offset
page table
Virtual | Physical
Page # | Page # \4
page
table
=31 0x004lab.. | 0x5230a...

\ 4 \ 4 \4 \4

physical address | 5230abeab44cf | cd5 | oo physical page # offset

Virtual address translation

virtual
memory

0041ab8fel23e

cd5b -

0041ab8fel23e

000 -

page table

Virtual
Page #

Physical
Page #

---»

0x004 1 ab...

0x5230a...

physical
memory

' 5230abeabdd4ct

cd5

 5230abeabdd4ct

000

Virtual Address Spaces

P, address space

code heap stack

0 ; 264

physical
memory

i page
"""" > table ::>>

Do you ever want
to share memory
across processes?

page
P > table ::>>

P, address space

code heap stack

Virtual Address Spaces

P, address space

code shared lib heap stack physical
0 264 memory
page
"""" table >
Do you ever want
to share memory
aCross pI‘OCESSGS?
- yes! shared libraries!
page
"""" table >
P, address space
code shared lib heap stack

264- |

P, address space

Shared Libraries

code

shared lib

heap

stack

P, address space

A shared library:

264- |

- think printf(): *.s0 on linux, *.dll on windows

- share code pages in multiple address spaces
(saves space!)

Problem: can’t let P, overwrite to P,’s code!
- solution: map pages read-only

code

shared lib

heap

stack

264- |

physical
memory

P, address space

Shared Libraries

code shared lib heap stack
' 64_
0 page table 27|
Virtual | Physical Protection
Address | Address Bits
: pages mapped read-only
----------------------------- » 0x004lab... X writable
page table
Virtual | Physical Protection
Address | Address Bits
‘,—‘,l 0x07eff... X writable
P. address space .-~
code shared lib heap stack

264- |

physical
memory

“‘ k’

Page table protection bits

(partial list)

e writable bit

- is the page writable!?
- when unset, the page is read-only

Why would you want this?
- protect code pages (don’t accidentally overwrite)
- read-only data (e.g. constant strings literals:“xyz”)

® executable bit

- is the page executable?
- when unset, code on the page cannot be executed

Why would you want this?
- protect non-code pages (e.g. prevents buffer overflow exploits)
- read-only data (e.g. constant strings literals:“xyz”)

Shared Libraries

Shared libraries are loaded at runtime

New steps to start a program:
I. Load program executable
la. Load shared libraries «
2, Copy the args into memory
3. Setup the registers
4. Jump to main()

Shared Libraries

P, address space

code shared lib heap stack
0 : ‘ 264 |
v “a
Ox0AQ call foo Ox3FC memcpy:

How do we know the address of

0x105 foo: memcpy?
call memcpy

- it depends on where the lib was loaded

- solution: jump table

0xB0O5 memcpy:

A

P> address space

code shared lib heap stack
0 264-

Shared Libraries

P, address space

code heap stack

A\

Ox0AOQ call foo

Ox 105 foo:
call YjumpTable[42] | |Ljbrary call indirects through jump table

jumpTable = {
[0] =
[1]1=? Jump table initially empty

[42] =?

}

Shared Libraries

P, address space

code shared lib heap stack

§~~
~§
~

A\

Ox0AQ call foo Ox3FC memcpy:

Ox 105 foo:
call *jumpTable[42]

jumpTable = {
e Jump table fixed when library is loaded
ot - by a program called a loader
[42] = &memcpy, <«
: Ox3FC

20

