
CSE 351: The 
Hardware/Software Interface 

Section 5 

Structs as parameters, buffer 
overflows, and lab 3 



Structs as parameters 

In the previous section, we looked at how 

integers and pointers were passed as 

arguments to functions 

If we were to pass a struct by value to a 

function (as in not passing a pointer), how 

would the compiler use assembly 

instructions to achieve this? 

Let’s take a look at an example (see 

pass_struct.c from the section material) 
2/7/13 2 



Buffer overflows 

C performs no bounds-checking on array 
accesses; this makes it fast but also unsafe 
What would we need to add to C to support 

checked array accesses? 

For example: int arr[10]; arr[15] = 3; 
No compiler warning, just memory corruption 

What symptoms are there when programs 
write past the end of arrays? 
Hint: we saw an example of this in lab 0 

2/7/13 3 



Stack layout 

As we’ve seen previously, when 

values are declared on the stack, 

the compiler shifts %rsp (in x86-64 

assembly) to allocate space for 

them 

When a function returns, the return 

instruction pointer indicates where 

to begin executing again 
2/7/13 4 

Return 
instruction 

pointer 

Saved 
registers 

int a 

int b 

uint64_t c 

char d[8] 

... 



Stack layout 

Note that the top of the diagram 

represents higher addresses, and 

the bottom is lower addresses 

To which memory does d[10] refer 

in this example? 

2/7/13 5 

Return 
instruction 

pointer 

Saved 
registers 

int a 

int b 

uint64_t c 

char d[8] 

... 



Buffer overflow attacks 

In buffer overflow attacks, 

malicious users pass values to 

attempt to overwrite important 

parts of the stack or heap 

For example, an attacker could 

overwrite the return instruction 

pointer with the address of a 

malicious block of code 
2/7/13 6 

Return 
instruction 

pointer 

Saved 
registers 

int a 

int b 

uint64_t c 

char d[8] 

... 



Buffer overflow attacks 

 C has some inherently unsafe functions that 

facilitate buffer overflows, including gets and 
strcpy 

 gets(char* s) reads from standard input until 

reaching a newline character (‘\n’) or EOF (end of 

file) 
 How long should s be to contain the entire input string? 

 strcpy(char* dest, const char* src) 

copies the contents of the src string into the dest 

string 
 What happens if dest is smaller than src? 

2/7/13 7 



Protecting against overflows 

As a programmer, you can protect against 

buffer overflow bugs/attacks by checking 

buffer lengths and using safer string-related 

functions 
 fgets(char* s, int size, FILE* stream) 

takes a size parameter and will only read that many 

bytes from the given input stream 
 strncpy(char* dest, const char* src, 

size_t n) will copy at most n bytes from src to 
dest 

2/7/13 8 



Protecting against overflows 

Stack canaries 
 At runtime, programs place a (pseudo-)random 

integer on the stack immediately before the return 
instruction pointer. If the integer value doesn’t 
match when the function returns, the program 
generates a segmentation fault 

Data execution prevention 
 Some parts of memory (notably the stack) are 

marked as non-executable. The CPU will refuse to 
execute instructions from such locations and the 
program will terminate 

2/7/13 9 



Lab 3: Buffer overflows 

The purpose of lab 3 is to become familiar 

with how buffer overflow attacks work 

The various stages of the lab require 

different types of attacks to achieve certain 

goals 

If you have become comfortable with GDB 

and understanding assembly instructions, 

you should have no problem 
2/7/13 10 



Lab 3: Buffer overflows 

The exploitable function in lab 3 is called 

Gets (capital ‘G’) and is called from the 

getbuf function 

 getbuf allocates a small array and reads 

user input into it via Gets. If the user input is 

too long, then certain values on the stack 

within the getbuf function will be 

overwritten... 

 2/7/13 11 



Lab 3: Buffer overflows 

 The first thing to do is to become familiar with the 

provided tools for the lab 

 To generate malicious strings for testing buffer 

overflows, use the provided sendstring tool. It takes 

a list of space-separated hex values and translates 

them to the corresponding Ascii characters 

 Each lab is slightly different as determined by the 

username given to it; when you run the bufbomb 

binary, you have to pass in “-u [cse-username]” 

 Let’s take a look at how this works 

2/7/13 12 


