
CSE 351: The
Hardware/Software Interface

Section 2

Integer representations, two’s
complement, and bitwise operators

Integer representations

 In addition to decimal notation, it’s important to be

able to understand binary and hexadecimal

representations of integers

 Decimal: 3735928559
 No prefix, just the number

 Binary: 0b11011110101011011011111011101111
 “0b” prefix denotes binary notation

 Hexadecimal: 0xDEADBEEF
 “0x” prefix denotes hexadecimal notation

Which notation is the most compact of the three?

Why use one over another?
1/17/13 2

Binary scale

Each digit in binary notation is either 0b0

(zero) or 0b1 (one)

To convert from (unsigned) binary to decimal

notation, take the sum of the nth digit

multiplied by 2n-1

As an example, 0b1101 = 1 * 23 + 1 * 22 + 0 * 21 +

1 * 20 = 8 + 4 + 0 + 1 = 13

1/17/13 3

Binary scale

 To convert from decimal to binary, use a combination
of division and modulus to get each digit, tracking the
remainder

 As an example, let’s convert 11 to binary
 (11 / 20) % 2 = 1, so the first digit is 0b1. Remainder is 11 -

1 * 20 = 10
 (10 / 21) % 2 = 5 % 2 = 1, so the second digit is 0b1.

Remainder is 10 - 1 * 21 = 8
 (8 / 22) % 2 = 4 % 2 = 0, so the third digit is 0b0.

Remainder is 8 - 0 * 22 = 8
 (8 / 23) % 2 = 1 % 2 = 1, so the fourth digit is 0b1
 Finally, we have that 11 is 0b1011 in binary

1/17/13 4

Hexadecimal scale

Each digit ranges in value from 0x0 (zero) to

0xF (fifteen)
A => ten, B => eleven, C => twelve, D => thirteen,

E => fourteen, F => fifteen

To convert from (unsigned) hexadecimal to

decimal notation, take the sum of the nth

digit multiplied by 16n-1

As an example, 0xACE = 0xA * 162 + 0xC * 161 +

0xE * 160 = 10 * 256 + 12 * 16 + 14 = 2766

1/17/13 5

Hexadecimal scale

 The decimal to hexadecimal conversion is the same
process as decimal to binary except with 2 instead of 16

 As an example, let’s convert 3254 to hexadecimal
 (3254 / 160) % 16 = 6, so first digit is 0x6. Remainder is 3254 -

0x6 * 160 = 3248
 (3248 / 161) % 16 = 203 % 16 = 11 = 0xB, so second digit is 0xB.

Remainder is 3248 - 0xB * 161 = 3248 - 176 = 3072
 (3072 / 162) % 16 = 12 % 16 = 12 = 0xC, so third digit is 0xC
 Finally, we have that 3254 is 0xCB6 in hexadecimal

 If we were to write a program to convert from decimal to
binary or to hexadecimal, how could we compute the nth
digit efficiently using bitwise operators and modulus (%)?

1/17/13 6

Two’s complement review

In class, we established that two’s

complement is a nice format for representing

signed integers for a couple different

reasons. What were they?

1/17/13 7

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7 – 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s complement review

 Let’s say that we want to encode -5 in binary using
two’s complement form and four bits
 With four bits, the highest bit has a negative weight of 23,

so 0b1000 = -8
 -5 = -8 + 2 + 1
 = 1 * -23 + 0 * 22 +
 1 * 21 + 1 * 20
 = 10b1011
 5 = 4 + 1
 = 0 * -23 + 1 * 22 + 0 * 21 +
 1 * 20
 = 0b0101

1/17/13 8

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7 – 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Operator review

 ~ is arithmetic not (flip all bits)
 Example: ~0b1010 = 0b0101

 ! is logical not (1 if 0b0, else 0)
 Example: !0b100 = 0, !0b0 = 1

& is bitwise and
 Example: 0b101 & 0b110 = 0b100

 | is bitwise or
 Example: 0b101 | 0b100 = 0b101

 >> is bitwise right shift
 Example: 0b1010 >> 1 = 0b1101, 0b0101 >> 1 = 0b0010

 << is bitwise left shift
 Example: 0b1010 << 1 = 0b0100, 0b1000 << 1 = 0b0000

1/17/13 9

Operator uses

 Can express negation in terms of arithmetic not and
addition
 For example, ~4 + 1 = ~0b0100 + 1 = 0b1011 + 1 = -5 + 1 =

-4

 Can use shifting, bitwise and, and logical not to
detect if a particular bit is set
 As a simple example, !!(x & (0x1 << 1)) evaluates to 1 if

the second bit it set in x and 0 otherwise
 Useful for checking if a value is negative

 Can implement ternaries (x = __ ? __ : __) using
bitwise and, bitwise or, and arithmetic not
 This has wide-ranging applications in lab 1

1/17/13 10

Bitwise operators in practice

Is what we’re learning ever useful in

practice?

Thankfully (or not, depending on how you look at

it), it is

 Setting bits in permission strings

 For example, to choose the

1/17/13 11

Packing and unpacking

 Let’s say that you have values x, y, and z that take 3,

4, and 1 bit to represent, respectively

 Is there a way to store these three values using only

eight bits?

 In C, we can define a struct that specifies the width

in bits of each value
 …though the compiler will add padding to make the

struct a certain size if you don’t do so yourself

 In Java, there are no structs, and we have to use

bitwise operators

12/9/10 12

Packing and unpacking (C)

#include <stdio.h>

typedef struct {

 int x : 3;

 int y : 4;

 int z : 1;

 int padding : 24;

} Flags;

int main(int argc, char* argv[]) {

 Flags flags = {3, 8, 1, 0x8fffff};

 printf("sizeof(flags) is %ju and it stores 0x%x\n",

 sizeof(flags), *(int*) &flags);

 return 0;

}

12/9/10 13

Packing and unpacking (Java)

// Pack some values into a byte

byte bitValue = 0;

bitValue |= 3;

bitValue |= 8 << 3;

bitValue |= 1 << 7;

// Unpack the values from the byte

byte x = bitValue & 0x7;

byte y = bitValue & 0x78;

byte z = bitValue & 0x80;

// Alternatively, we could have shifted a particular

// mask instead, e.g. (0x1 << 7) instead of 0x80

12/9/10 14

Lab 1 hints

 Decompose each problem into smaller problems

 If you are stuck on how to solve something, write it

as a combination of functions and boolean logic
 Over time, replace each function or boolean operator

with a combination of permitted operators

 Hint for detecting overflow: what is the sign of the

integer produced by adding TMax to a positive value?

What about when adding negative numbers?

 Hint for counting bits: consider multiple bits at once.

40 operations isn’t enough to check each individually

1/17/13 15

