CSE 351: The
Hardware/Software Interface

Section 1
Intro, C programming, C tools

1/10/13

Introduction

Mark Wyse

Upper Division Transfer, Autumn 2012
* Computer Engineering
* Enjoyed CSE351 last quarter, so why not TA?

Experience

* Lockheed Martin Aeronautics
* Microsoft

Office Hour: Tuesday 11:00am-12:00pm in CSE 002
* Contact: discussion board or email (wysem@cs)

1/10/13

Course Tools

Use whatever works best for you: the CSE home

VM, attu, the instructional Linux machines, or

your own Linux installation (we won’t provide
support if you go this route, though)

From pretty much any machine, you can use
PuTTY (Windows) or an SSH client (OS X, Linux,

iOS, Android, etc.) to access attu

* Via SSH: ssh [username]@attu.cs.washington.edu

http://www.cs.washington.edu/lab/software/homeVMs/
http://www.cs.washington.edu/lab/software/homeVMs/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

1/10/13

Course Tools

We'll be using the GNU C Compiler (gcc) for
compiling C code in this course, which is
available on pretty much every platform
except Windows (unless through Cygwin)
For an editor, use whatever makes you
comfortable; Emacs, Vim, gedit, and Eclipse
are good choices

1/10/13

Unix Commands

We’re going to assume that you know some basic
Unix commands; there are many guides online if you
need additional help such as this one

cd: change directory

* Example: cd path/to/directory

pwd: print working directory

* Example: From my home directory on attu, pwd prints out
/homes/iws/snowden

|s: list directory contents
* Example: 1s .. (list the directory one above this one)

chmod: change mode (permissions)
* Example: chmod +x file (make file executable)

http://www.cs.washington.edu/education/courses/cse390a/12au/lectures/1/390aLecture01_12au.pdf

1/10/13

Compiling C Code

There are two steps to get from a C source file to an
executable file: compiling and linking

To compile a source file with GCC, use the -c option:
gcc —c example.c

* This will produce a corresponding example.o file, which
contains the machine code for the example.c source file

To link object files into an executable with GCC, list
them as arguments: gcc -0 example example.o [..]

* Here the -0 option specifies what to name the output; it
will be an executable file called “example”

1/10/13

Compiling C Code

It’s also possible to combine the two steps: gcec -o
example example.c

* This will accomplish both the compilation and the linking
at once
* Why might it be a good idea to separate these two steps?

GCC takes a number of flags, which you will see/have

seen with lab 0

* -gtoinclude debugging symbols

*k -Wall to warn about all recognized problems

* -std=gnu99 to use the C99 standard instead of the C89
standard, which is just a couple years out of date

* Example: gcc -g -Wall -std=gnu99 -o example
example.c

A Basic C Program

The Hello World of C:

#include <stdio.h>
int main(int argc, char* argvl[]) {
printf ("Hello World\n");

return 0;

1/10/13

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

The first line is a header inclusion
Headers provide declarations (but not normally
definitions) of other code

* stdio.h contains the declaration of the printst
function, which is used for printing to the console

1/10/13

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

On Linux, you can look under /usr/include to
see the contents of these header files

I”

To refer to headers that aren’t part of “specia
directories, put the path to them in quotes

* As an example, #include "path/to/header.h"

1/10/13 10

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

The next part of the file is the declaration of the
entry point for the program: main ()

* main () takes two parameters, the first of which is the
number of strings contained in the second parameter.

argv is an array of the arguments to the program

1/10/13 11

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

The printf () function prints to the console.
It is equivalent to Java’s system.out.printf ()
and requires that you insert a newline
explicitly

1/10/13 12

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

Finally, return 0 indicates the status code of the
program when it exits
A status code of O indicates success, whereas

other numbers have a different meaning

* errno.h includes the names of many status codes,
which are documented in “man errno”

1/10/13 13

A Basic C Program

#include <stdio.h>
int main(int argc, char* argv([]) {
printf ("Hello World\n");

return 0;

Let’s compile and run the program

1/10/13

14

1/10/13

Formatting Output

In C, there is no easy way to concatenate strings
as there is in Java. Instead, printf () supports a
number of format codes

Example: int val = 10; printf ("%d\n", wval);
* %d is the format code for ints, so the above code wiill
print “10” with a newline

Other format codes: %f for floats and doubles,
%s for strings, %x for hexadecimal values, %p for
pointers. See the cplusplus site for more info

15

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/printf/

Formatting Output

A few different scenarios:

printf ("There are %d students enrolled "
"in the class\n", 88);

printf ("The course number for this "
"class 1s %$s\n", "CSE 351");

printf ("If you want a %f 1n %s, you’ll "
"need to work for it\n", 4.0,
"CSE 3518

1/10/13

16

1/10/13

Man Pages

Much of the functionality of Linux is
documented in man pages. Man pages are
manuals describing how a variety of
commands, functions, and so forth work

As an example, take a look at man ssh. This
describes how the ssh command works

For C functions, look in section 3; that is, use
man 3 [topic], SOman 3 printf for the
printf () function

17

1/10/13

Debugging

The best way of debugging C programs is to
use GDB (not printf statements!)

GDB is the GNU debugger, and it does a
variety of amazing things. To use it, compile
your program using the -g option (to include
debugging symbols) and then run in under
GDB with gdb ./example

Let’s run the hello world program from
before under GDB

18

1/10/13

Debugging

Use the “p” (print) command within GDB to print out
values of variables and their addresses

Use the “b” (breakpoint) command to set a breakpoint at
a particular line/file/function, e.g. “b 79” to break
execution at line 79 in the current file

Use the “c” (continue) command to resume execution
after hitting a breakpoint

Use the “d” (delete breakpoint) command to remove
breakpoints, e.g. “d 1” to delete breakpoint 1

Use the “list” command to output the code with line
numbers in the current file. “list [line-#]" will list code
from the given line; press Enter to see more code

19

1/10/13

Debugging

Use the “x” (examine) command within GDB
to examine memory at a certain address
(more useful in later labs)

Use the “r” (run) command to execute the
orogram

Use the “s” (step) command within GDB to
execute one C statement

Use the “n” (next) command to execute one
C statement, skipping over function calls

20

1/10/13

Debugging

Use the “bt” (backtrace) command within GDB
to print out the current call stack

Use the “frame” command jump to the
indicated stack frame, e.g. “frame 3” for stack
frame 3. Use this in combination with the “bt”
command

When setting breakpoints, you can specify a
condition so that the debugger only breaks if
the condition is met, e.g. “b example.c:83 if x ==
10” will set a breakpoint at line 83 of example.c
that will activate only when x is 10

21

1/10/13

Your Turn

Working in pairs/groups, download the two .c
files for this section from the course calendar
and use GDB to debug and fix the problems
using the techniques given in the source files
* Work first on conditional.c, then on backtrace.c

* Alternatively, if you haven’t completed lab 0, now
would be a good time to do it

Be sure to ask for help if needed!

GDB Cheat Sheet:

% http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

22

http://www.cs.washington.edu/education/courses/cse351/13wi/schedule.html
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf
http://csapp.cs.cmu.edu/public/docs/gdbnotes-x86-64.pdf

