University of Washington

Final exam: Wednesday, March 20, 2:30pm

m Here in Mary Gates 389, 2:30pm —4:20pm
m Focus will be on material covered in lecture and in labs during
the second half of the course

= Use textbook to supplement / fill in details; if you see something in the
textbook that we didn’t cover in class, then it’s not on the exam

m Questions will be similar to homeworks and past exams
m How to prepare:

= Study lecture slides (review coursecasts if you missed something)
" Understand the homework problems and solutions

= Review the practice problems in the book
= Look at previous exams

m Q&A session: Tuesday, at ??
= But please post questions to the discussion board before then

Winter 2013 Wrap-up 1

University of Washington

CSE 351 grading

m Your overall grade in the class is calculated from:
= Homeworks (20%)
= Labs (40%)
= Midterm exam (15%)
" Final exam (25%)

http://www.cs.washington.edu/education/courses/cse351/13wi/policies.html

Winter 2013 Wrap-up 2

University of Washington

The Big Theme: Interfaces and Abstractions

m Computing is about abstractions
= (but we can’t forget reality)

m What are the abstractions that we use?

m What do YOU need to know about them?
= When do they break down and you have to peek under the hood?
= What bugs can they cause and how do you find them?

m How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?

= Become a better programmer and begin to understand the important
concepts that have evolved in building ever more complex computer
systems

Winter 2013 Wrap-up 3

University of Washington

Little Theme 1: Representation

m All digital systems represent everything as Os and 1s
" The 0 and 1 are really two different voltage ranges in the wires
m “Everything” includes:

" Numbers —integers and floating point
® Characters — the building blocks of strings

" |nstructions — the directives to the CPU that make up a program
" Pointers — addresses of data objects stored away in memory

m These encodings are stored throughout a computer system
" |n registers, caches, memories, disks, etc.

m They all need addresses
= A way to find them

" Find a new place to put a new item
= Reclaim the place in memory when data no longer needed

Winter 2013 Wrap-up 4

University of Washington

Little Theme 2: Translation

m There is a big gap between how we think about programs and
data and the Os and 1s of computers

m Need languages to describe what we mean

m Languages need to be translated one step at a time
= Words, phrases and grammars

m We know Java as a programming language

= Have to work our way down to the Os and 1s of computers
" Try not to lose anything in translation!

= We'll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

Winter 2013 Wrap-up 5

University of Washington

Little Theme 3: Control Flow

m How do computers orchestrate the many things they are
doing — seemingly in parallel

m What do we have to keep track of when we call a method,
and then another, and then another, and so on

m How do we know what to do upon “return”

m User programs and operating systems
= Multiple user programs
® QOperating system has to orchestrate them all
= Each gets a share of computing cycles
= They may need to share system resources (memory, |I/0O, disks)
" Yielding and taking control of the processor
= Voluntary or “by force”?

Winter 2013 Wrap-up 6

University of Washington

Data & addressing

Roadmap Integers & floats

Machine code & C

C: Java:
x86 assembly
car fc = malloc (sizeof (car)) ; Car c = new Car() ; programming
c->miles = 100; c.setMiles (100) ; Procedures &
c->gals = 17; c.setGals (17) ;
_ stacks
float mpg = get mpg(c) ; float mpg =
free (c); c.getMPG () ; Arrays & structs
Y — Memory & caches
Assembly get mpg: Processes
language: pushq %rbp Virtual memory
APE REER, WERE Memory allocation
popq 3rbp Java vs. C
ret $
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111

Computer
system:

Winter 2013 Wrap-up 7

University of Washington

Course Perspective

m This course will make you a better programmer
" Purpose is to show how software really works

= By understanding the underlying system, one can be more effective as a
programmer

= Better debugging

= Better basis for evaluating performance

= How multiple activities work in concert (e.g., OS and user programs)
"= Not just a course for dedicated hackers

= What every CSE major needs to know

= Job interviewers love to ask questions from 351!
" Provide a context in which to place the other CSE courses you’ll take

Winter 2013 Wrap-up 8

University of Washington

If you liked this class, then consider...

CSE477/481/490/etc.
Capstone and Project Courses

CSE352 CSE333 CSE451 CSE401 CSE461 CSE484 CSE466
HW Design Systems Prog | Op Systems || Compilers Networks Security Emb Systems

N \ 7 —
Performance ¢\ vency Distributed E’I‘\:c‘:jt"l’“
ode
Machine Systems
Comp. Arch. Code Real-Time
\ | / Control
CSE351 | The HW/SW Interface:

underlying principles linking
hardware and software

a

CS 143
Intro Prog Il

Winter 2013 Wrap-up 9

