University of Washington

The Hardware/Software Interface
CSE351 Winter 2013

Javavs. C

University of Washington

Java vs. C

m Reconnecting to Java
= Back to CSE143!

® But now you know a lot more about what really happens when we
execute programs

m We've learned about the following items in C; now we’ll see
what they look like for Java:
= Representation of data
= Pointers / references
= Casting
= Function / method calls
® Runtime environment
= Translation from high-level code to machine code

Winter 2013 Javavs.C 3

University of Washington

Roadm

ap

C:

Java:

c->miles =
c->gals =

car *c = malloc (sizeof (car));

100;
17;

Car c = new Car();
c.setMiles (100) ;
c.setGals (17) ;

Data & addressing
Integers & floats
Machine code & C
x86 assembly
programming
Procedures &
stacks

float mpg = get mpg(c); float mpg = A 2
free(c) ; c.getMPG() ; rrays & structs
—— = Memory & caches
Assembly | get_mpg: Processes
language: pushq %rbp Virtual memory
mSTE EED, D Memory allocation
popq $rbp Javavs. C
ret
I 0S:
A 4
Machine 0111010000011000 -- '
de: 100011010000010000000010
code: 1000100111000010 [q
110000011111101000011111 Windows 8 Mac L
!
[2
Computer
system:

Winter 2013

A Ve,

Meta-point to this lecture

University of Washington

m None of the data representations we are going to talk about
are guaranteed by Java

m In fact, the language simply provides an abstraction

We can't easily tell how things are really represented

m But it is important to understand an implementation of the
lower levels — useful in thinking about your program

Winter 2013

Javavs. €

University of Washington

Data in Java

Integers, floats, doubles, pointers —same as C

" Yes, Java has pointers — they are called ‘references’ — however, Java
references are much more constrained than C’s general pointers

Null is typically represented as 0
Characters and strings

Arrays

Objects

Winter 2013 Javavs. C 5

University of Washington

Data in Java

m Arrays
= Every element initialized to O
® Bounds specified in hidden fields at start of array (int — 4 bytes)
= array.length returns value of this field
= Hmm, since it has this info, what can it do?

int array[5]:

: el
0 4 20 24

Java | 5 [00[0o]0o[00]00]

Winter 2013 Javavs.C 7

University of Washington

Data in Java

m Characters and strings
® Two-byte Unicode instead of ASCII
= Represents most of the world’s alphabets
= String not bounded by a “\0’ (null character)
= Bounded by hidden length field at beginning of string

the string ‘CSE351’:
C: AsCll |43|53|45|33|35|31|\0|

0 1 4 7 16
tava:unicode| 6 |00[43]00]53]00[45]00[33]00[35]00]31]

Winter 2013 Javavs. € 6

University of Washington

Data in Java

m Arrays
= Every element initialized to 0
® Bounds specified in hidden fields at start of array (int — 4 bytes)
= array.length returns value of this field
= Every access triggers a bounds-check
= Code is added to ensure the index is within bounds
= Exception if out-of-bounds

int array[5]:

C

Java | 5 Joo]oo[oof00]00]

Winter 2013 Javavs. 8

University of Washington

Data structures (objects) in Java

m Objects (structs) can only include primitive data types
" Include complex data types (arrays, other objects, etc.) using references

C | struct rec { Java | class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
}i
}i
struct rec *r = malloc(...); r = new Rec;
struct rec r2; r2 = new Rec;
r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;
r->p = &r2;

0 4 16 20 0 4 8 12

Winter 2013 Javavs.c 0

r.p = r2;
4 16 o

University of Washington

Pointers to fields

m In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
® (*r).ais so common it becomes r->a

m InJava, all variables are references to objects
= We always use r.a notation
= But really follow reference to r with offset to a, just like C's r->a

Winter 2013 Javavs. € 11

University of Washington

Pointers/References

m Pointers in C can point to any memory address
m References in Java can only point to an object

= And only to its first element — not to the middle of it

C|struct rec { Java| class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
Y -
some_fn(&(r.a[l])) //ptr }i
some_fn(r.a, 1) //ref & index
7~ N\ &
i 5
CLL i Tt
0 4 8 12
0 4 16
Winter 2013 Javavs. € 10

University of Washington

Castingin C

m We can cast any pointer into any other pointer

struct BlockInfo {
int sizeAndTags;

struct BlockInfo* next; Cast b into char

struct BlockInfo* prev; pointer so that
}; you can add byte
typedef struct BlockInfo BlockInfo; °ﬁs|f“ without

scaling

:
int x; Cast back into
BlockInfo *b; Blockinfo pointer
BlockInfo *newBlock; SO you can use it

as Blockinfo struct
newBlock = (BlockInfo *) ((char *) b + x);

—
Le]n [e [s]n [e | |
0 4 8 12 x
Winter 2013 Javavs. C 12

University of Washington

Casting in Java

m Can only cast compatible object references

class Sister extends Parent{
int hers;

class Object{ class Parent { i
—>| int address;
}i }i

class Brother extends Parent{
int his;

}i

// parent is a super class of Brother and Sister, which are siblings
Parent a = new Parent();
Sister XX new Sister();
Brother xy = new Brother();
Parent pl new Sister(); // ok, everything needed for Parent
// is also in Sister

Parent P2 = pl; // ok, pl is already a Parent

Sister xx2 = new O /i ible type — Brother and
// Sisters are siblings

Sister xx3 = new Parent(); // wrong direction; elements in Sister
// not in Parent (hers)

Brother xy2 = (Brother) a; // run-time error; Parent does not contain
// all elements in Brother (his)

sister xx4 = (Sister) p2; // ok, p2 started out as Sister

sister xx5 = (Sister) xy; // inconvertible types, xy is Brother

How is this implemented / enforced?

Winter 2013 Javavs. € 13

University of Washington

Creating objects in Java

“,

= “new”
= Allocates space for data fields
® Adds pointer in object to “virtual table” or “vtable” for class
= vtable is shared across all objects in the class!
= Includes space for “static fields” and pointers to methods’ code
= Returns reference (pointer) to new object in memory
® Runs “constructor” method
m The new object is eventually garbage collected if all
references to it are discarded

Point object: | vtable kl x | y |

samePlace ._l/

Winter 2013 Javavs. € 15

constructor
y_)

University of Washington

Creating objects in Java

class Point { — fields
double x; /

double y;

Point () { — constructor
x =0;
y =0;

}
— method
boolean samePlace (Point p) { /

return (x == p.x) && (y == p.y);
}

}
- creation

Point newPoint = new Point();

Winter 2013 Javavs. C 14

Initialization
m newPoint’s fields are initialized starting with the vtable
pointer to the vtable for this class

m The next step is to call the ‘constructor’ for this object type

m Constructor code is found using the ‘vtable pointer’ and
passed a pointer to the newly allocated memory area for
newPoint so that the constructor can setits xandy to 0

. Poinw)

|vtable, [x = 0 ly = o |

\ construclg: samePlace._l/

Winter 2013 Javavs.C 16

How does the constructor know
where to find x and y?

University of Washington

Java Methods

m Methods in Java are just functions (as in C) but with an extra
argument: a reference to the object whose method is being
called

= E.g., newPoint.samePlace calls the samePlace method with a pointer to
newPoint (called ‘this’) and a pointer to the argument, p — in this case,
both of these are pointers to objects of type Point

= Method becomes Point.samePlace(Point this, Point p)

= return x==p.x && y==p.y; becomes something like:
return (this->x==p->x) && (this->y==p->y);

Winter 2013 Javavs. € 17

University of Washington

Subclassing

class PtSubClass extends Point{
int aNewField;
boolean samePlace(Point p2) {
return false;
}
void sayHi() {
System.out.println("hello");

} b aNewfField tacked on at end
vtable kl x | y | aNewFie1d|

constructjgr
vtable for PtSubCV
(not Point) /’k_)

Pointer to old code for constructor

samePlace
[]

sayHi ’_I_/

Pointer to new code for samePlace

Winter 2013 Javavs. € 19

University of Washington

Subclassing

class PtSubClass extends Point{
int aNewField;
boolean samePlace(Point p2) {
return false;
}
void sayHi() {
System.out.println("hello");
}
}

m Where does “aNewField” go?

= At end of fields of Point — allows easy casting from subclass to parent
class!

m Where does pointer to code for two new methods go?
" To override “samePlace”, write over old pointer
= Add new pointer at end of table for new method “sayHi”

Winter 2013 Javavs. C 18

University of Washington

Implementing Programming Languages

Many choices in how to implement programming models

We’ve talked about compilation, can also interpret
= Execute line by line in original source code

= |ess work for compiler — all work done at run-time
® Easier to debug — less translation

® Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

Interpreting languages has a long history
= Lisp —one of the first programming languages, was interpreted
Interpreted implementations are very much with us today
= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Winter 2013 Javavs.C 20

University of Washington

Interpreted vs. Compiled

m Really a continuum, a choice to be made
= More or less work done by interpreter/compiler

Compiled

Interpreted

m Java programs are usually run by a virtual machine

" VMs interpret an intermediate, “partly compiled” language called
bytecode

m Java can also be compiled ahead of time (just as a C program
is) or at runtime by a just-in-time (JIT) compiler

Javavs. € 21

Winter 2013

University of Washington

Java Virtual Machine

Makes Java machine-independent Holds polnter ‘this

n
m Provides strong protections Other arguments to method |
m Stack-based execution model
m There are many JVMs oz ~ S
= Some interpret |°|1|2|3|4| | | |"|
= Some compile into assembly variable table

= Usually implemented in C operand stack

constant
pool

TvaveC 23

Winter 2013

University of Washington

Virtual Machine Model

[High-Level Language Program]

Bytecode Ahead-of-time
compiler 7 compiler

‘ Virtual Machine Langu I

Virtual machine JT
(interpreter) 4 compiler 7

‘ Native Machine Language ’

Winter 2013

Javavs. C 22

University of Washington

JVM Operand Stack Example

‘i’ stands for integer,
‘a’ for reference,

‘b’ for byte, No knowledge
‘c’ for char, of registers or
‘d’ for double, ... memory locations

(each instruction
is 1 byte — bytecode)

iload 1 // push 1%t argument from table onto stack
iload 2 // push 2" argument from table onto stack
iadd // pop top 2 elements from stack, add together, and

// push result back onto stack
istore 3 // pop result and put it into third slot in table

mov 0x8001, %eax
mov 0x8002, %edx
add %edx, %eax

mov %eax, 0x8003

Winter 2013

Javavs.C 24

University of Washington University of Washington

A Simple Java Method Class File Format

m Every class in Java source code is compiled to its own class file

Method java.lang.String getEmployeeName() m 10 sections in the Java class file structure:

0 aload 0 // "this" object is stored at O in the var table = Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: the minor and major versions of the class file
1 getfield #5 <Field java.lang.String name> // takes 3 bytes

_ . = Constant pool: set of constant values for the class
// pop an element from top of stack, retrieve its

// specified field and push the value onto stack. = Access flags: for example whether the class is abstract, static, etc.
// "name" field is the fifth field of the class = This class: The name of the current class
i = Super class: The name of the super class
4 areturn // Returns object at top of stack])
= Interfaces: Any interfaces in the class
0 1 4 = Fields: Any fields in the class
aload_0 | getfield | 00 | 05 areturn = Methods: Any methods in the class

= Attributes: Any attributes of the class (for example the name of the source file,
In the .class file: |2a[s4[00]o5]50] etc)
m A jar file collects together all of the class files needed for the

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings program, plus any additional resources (e'g' 'mages)

Winter 2013 Javavs. € 25 Winter 2013 Javavs. € 26
University of Washington University of Washington

Compiled from Employee.java
D' bl d class Employee extends java.lang.Object {
Isassem e public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();

J ava Bytecod e l;ublic int getEmployeeNumber () ;

Method Employee(java.lang.String,int)

aload_0

invokespecial #3 <Method java.lang.Object()>

aload_0

aload_1

putfield #5 <Field java.lang.String name>

aload_0

10 iload 2

11 putfield #4 <Field int idNumber>

javac Employee.java 14 aload 0

javap -c Employee > Employee.bc 15 aload_1

16 iload_2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

aue =o

©

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload_0

1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)

Winter 2013 Javays. € 27

Other languages for JVMs

= JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:

Winter 2013

Aspect], an aspect-oriented extension of Java

ColdFusion, a scripting language compiled to Java

Clojure, a functional Lisp dialect

Groovy, a scripting language

JavaFX Script, a scripting language targeting the Rich Internet
Application domain

JRuby, an implementation of Ruby

Jython, an implementation of Python

Rhino, an implementation of JavaScript

Scala, an object-oriented and functional programming language
And many others, even including C

Javavs.C 28

University of Washington

Microsoft’s C# and .NET Framework

m C# has similar motivations as Java

m Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and
other languages in the .NET framework

c# VB.NET J#
code code code
Compiler Compiler Compiler

Common Language Infrastructure

NET compaibie languages compie to
second patform-neutral language called
Common Intermediate Language (CIL).

1

Language
Runtime

|

0100110001011
H 11010101100110
Winter 2013 - 29

The platform-specific Common Language
Runtime (CLR) comples CIL to machine-
readable code thal can be execuled on the
curtent platorm.

